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Abstract

This paper discusses an investigation into thermal buckling and postbuckling of symmet-

rically laminated composite plates_: In this study thermal buckling is investigated for laminates

under two different simple support conditions, fixed and sliding. These laminates are sub-

jected to the conditions of a uniform temperature change and a linearly varying temperature

change along the length of the plate. Postbuckling in the presence of a uniform temperature

change and nonlinear response to imperfections in the form of a thermal gradient through the

thickness of the plate and a lack of initial flatness are also studied. The buckling response is

studied using variational methods, specifically lhe Trefftz criterion. Postbuckling and re-

sponses to imperfections are studied using nonlinear equilibrium conditions. A Rayleigh-Ritz

formulation is used to obtain numerical results from the formulations for the prebuckling re-

sponse, the buckling response, and the postbuckling and imperfection responses. The ana-

lyses are applied to graphile-reinforced materials with (_45/02)s and (4-45/0/90)s lamination

sequences. Numerical results are obtained for these laminates and also forlhecaseofthese

laminates being rotated 30deg inplane. For the first laminale, for example, such a rotation

results in a ( +75/-15/302)s stacking sequence. Such skewing of the principal material di-

rections may be encountered when using fiber-reinforced malerials in a structurally tailored

design. In addition, the influence on thermal buckling of a lack of ideal boundary conditions

in the form of boundary compliance and thermal expansion, which would occur in any real

set-up, are investigated.
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1.0 Introduction and Background

While fiber-reinforced polymer matrix composite materials have been used success-

fully on a number of military and commercial aircraft structures, their use on structures that

operate at elevated temperatures for sustained periods of time has been limited. This situ-

ation may change with the envisioned high-speed civil transport. On the basis of potential

structural efficiency and projected fabrication costs of composite materials, some proponents

of the high-speed civil transport contend that an affordable aircral_ will not be possible without

extensive use of polymer matrix materials in primary structures. The use of these materials

in a sustained elevated temperature environment, however, poses a wide variety of chal-

lenges. Among these challenges are: the large scale synthesis of polymers capable of re-

taining their properties at an elevated temperature', the processing of these polymers to make

affordable composites; the measurement and subsequent modetting of structurat and material

response; the design of efficient structures that can operate at elevated temperature, and the

verification of these designs through actual tests. The ability to design structures with the

complexity of a high-speed transport will be based on having the appropriate analytical tools

for combined thermal and structural analysis. Much of this will be new and will require time

to develop the tools and to interpret the results. Thus, a logical approach is to understand the

issues associated with simpler structural elements before approaching more complex struc-
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tures. This thesis describes a study directed at the latter point, namely, 'understanding the

response of a simple structural element in an elevated temperature environment. Specif-

ically, this thesis addresses the issue of thermally induced buckling and postbuckling of sym-

metrically laminated fiber-reinforced plates. As buckling and postbuckling are responses that

occur in an ideal situation, i.e., perfectly flat plates, no temperature gradients through the

thickness, etc., the response of plates in the presence of imperfections is also addressed.

Because in any real set-up the presence of compliance and thermal expansion in the frame

or fixture supporting the plate may also affect thermal buckling, these issues are also ad-

dressed. The study described is analytical in nature and is based on using Rayleigh-Ritz for-

mulations in conjunction with variational methods.

Though plates are a very limited structural form, thermally induced buckling and

postbuckling involve many issues. Among these are: the inclusion of temperature-dependent

material properties; the inclusion of time-dependent material properties due to the elevated

temperature effects in polymers; thermal gradients, both in the plane of the plate and through

the thickness; plate aspect ratio; plate boundary conditions; and the degree of material

property orthotropy. In this study, neither temperature-dependent nor time-dependent mate-

rial property effects will be addressed. However, the influence of temperature gradients and

material property orthotropy will be studied. Though only simple supports will be studied, two

different simple support conditions will be considered. The first set, which will be referred to

as the fixed edge case, will assume that all three components of the displacements at all four

edges are zero. The second set, which will be referred to as the sliding edge case, will as-

sume that the out-of-plane displacements and the inplane displacements normal to the edges

are zero at all four edges. The inplane displacements parallel to the edges, however, are not

restricted to zero. That is, the edges of the plate may slide tangentially. Clearly, these two

sets of boundary conditions result in different prebuckling stress states. The question to be

addressed is the degree to which the two different simple support boundary conditions influ-

ence buckling and postbuckling response. The influence of plate aspect ratio on buckling is

studied. In this study, one more effect will be considered. To take full advantage of the di-
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rectionallydependentpropertiesof composites,manyapplicationsof compositematerialsin-

volvestructuraltailoring. Hencetheplate'sprincipalmaterialdirectionsmay not be aligned

with any of the edges of the plate. This is referred to here as material axis skewing. More

speci.flcally, to serve as an example, a quasl-isotropic stacking sequence of ( + 45/0/90)s may

be rotated in its plane by 30 ° to form a (+75/- 15/30/- 60)s stacking arrangement. This

study will explore the influence of this material axis skewing on buckling, postbuckling, and

the response in the presence of imperfections.

This thesis begins in the next chapter with a review of some of the relevant past work in

the area of thermally induced buckling and postbuckling. In ch. 3 a description is given of the

specific class of problems studied in this thesis. The geometry, definitions, and nomenclature

are introduced. The variational principles used to study buckling, postbuckling, and

imperfection response are also introduced, and the use of the Rayleigh-Ritz method as it is

applied here is described in general terms.

Chapter 4 focuses on buckling response. Inherent in the study of buckling is the issue

of prebuckling. The prebuckling response of the plate is determined by using the first vari-

ation in the total potential energy under the condition that the out-of-plane deflections are

zero. It is shown that for certain cases the prebuckling solution is trivial, while for other cases

it is as involved, or even more so, than the buckling solution. Buckling is studied, using the

prebuckling response, by examining the first variation of the second variation and allowing for

out-of-plane deflections. Numerical examples are given to illustrate the specific issues dis-

cussed with regard to buckling. Buckling due to a spatially uniform change in temperature,

and buckling due to a temperature gradient along the length of the plate are considered. The

influence on the buckling response of varying the material properties, as well as the influ-

ences of square and rectangular plate aspect ratios, quasi-isotropic and orthotropic stacking

arrangements, and fixed and sliding boundary conditions, are also considered. In all of these

cases, the influence of material axis skewing is studied. Convergence of the buckling calcu-

lations is also discussed, as is the sensitivity of the buckling calculations to variations in the

material properties.
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Postbuckllngresponseis discussedin ch.5. Thisproblemis computationallymoreIn-

volvedthanthe bucklingproblem. Thecouplingof the inplaneandout-of-planedisplace-

ments,inconjunctionwiththeRayleigh-Ritzformulation, results in a coupled set of nonlinear

algebraic equations that must be solved. Hence, to keep the computational work within

bounds, the specific issues discussed in conjunction with postbuckling response are some-

what more limited than the issues considered in the buckling chapter. Only a spatially uni-

form change in temperature and square laminates are considered. However, the influence

of material axes skewing, fixed and sliding boundary conditions, and quasi-isotropic and

orthotropic stacking sequences are discussed. Convergence of the postbuckling solution is

also evaluated.

Chapter 6 concerns the response of plates in the presence of imperfections. All lami-

nates deviate In some form and to some degree from the ideal situation. Spatially varying

properties due to nonuniform cure, variable ply thickness, and lack of initial flatness represent

but some of the the deviations from the ideal situation. Also, testing laminates, whatever the

form of loading, will introduce other deviations from the ideal. When testing laminates, ther-

mal gradients, friction, perhaps even the air currents In convective ovens, contribute to the

lack of ideal test conditions. Here two forms of imperfections will be considered, one due to

the laminate itself, and one due to testing. In particular, imperfections in the form of initial

out-of-plane deflections of the plate and in the form of a through-the-thickness temperature

gradient are modelled. With either imperfection present the problem is not one of buckling

or of postbuckling, rather it is a forced response problem. In general, such problems in the

presence of imperfections lead to a response that asymptotically approaches the postbuckling

response, as is the case here. Again, the influence of material axis skewing, boundary con-

ditions, and degree of orthotropy are studied, but now in the context of a slight out-of-plane

initial shape, and a slight temperature gradient through-the-thickness of the plate. These

calculations for the case of imperfections describe the response that is likely to be observed

In any experimental set-up. The calculations provide insight as to why observations might

deviate from the ideal.
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In designing an experimental fixture, or in analyzing a composite plate attached to a

frame made of some other material, the effects of a fixture with a finite stiffness and a nonzero

coefficient of thermal expansion on the thermal buckling response need to be considered.

Chapter 7 discusses the sensitivity studies conducted to determine the influence of the lack

of infinite fixturing stiffness and the presence of fixturlng thermal expansion in any real set-up.

Lastly, a discussion of the study, conclusions, and recommendations for future research

are presented in ch. 8.
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2.0 Literature Review

One of the earliest studies to examine thermal buckling of fiber-reinforced plates Is that

conducted by Whitney and Ashton [1] in 1971. The stability, vibration, and bending behavior

of composite plates subjected to a uniform increase in temperature, or to a swelling due to

moisture absorption, is studied using an energy formulation in conjunction with the Rayleigh-

Ritz method. For the thermal buckling problem, the prebuckling solution is obtained using

displacement equations derived from the equilibrium equations of laminated plate theory.

Only symmetric laminates for which all the prebuckling solutions are trivial are considered.

Two cases are examined for thermal buckling. In the first case, the effect of ply angle on the

buckling temperature is studied for angle-ply ( + B)s plates with two edges free and two edges

clamped so as to constrain movement normal to the clamped edge. Due to the negative

thermal expansion coefficient of graphite fibers, there can exist a range of values for B such

that the coefficient of thermal expansion for an angle-ply, graphite/epoxy laminate is negative.

In [1], it is found that for this range orB, the temperature must be decreased to cause buckling

in plates with two free edges. Moreover, there is, theoretically, a value of B for which such a

plate cannot be buckled either by raising, or lowering the temperature. In the second case,

the effect of varying B for (:1: 0/0)s laminates subjected on all four sides to sliding simple

support conditions is examined. For plates supported on all four edges, it is shown that
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bucklingcanonlyoccurfor positive changes in temperature. This case is Investigated for

graphite/epoxy, boron/epoxy, S glass/epoxy, and aluminum plates. Because of the low (or

negative) coefficient of expansion for all the fibers considered, the fiber-reinforced plates show

greater resistance to thermal buckling than aluminum. A similar treatment of the subject is

given by Whitney [2].

Flaggs and Vinson [3] consider hygrothermal effects in the buckling of moderately thick

composite plates. Using a formulation similar to Whitney and Ashton, but one which also ac-

counts for transverse shear and normal deformation, a study is made of the effects of tem-

perature change and moisture content upon the uniaxial prebuckling stress resultants for

(0/+ 45/90)s graphite/epoxy plates subject to sliding simple support and clamped boundary

conditions. In all cases studied the hygrothermal loads reduce the prebuckling stress result-

ants necessary to cause buckling.

In [4], Stavsky develops a thermoelastic theory for thin anlsotropi¢ plates which were

heterogeneous through the thickness. This theory is formulated from differential equations

of equilibrium in terms of the transverse deflection, and Airy's stress function. Nonlinear

terms are included to obtain the thermal postbuckling equations. A similar formulation is

used by $tavsky [5] to study the thermal buckling of circular plates composed of cylindrically

orthotropic layers. Biswas [6] also develops thermal buckling equations from the equations

of equilibrium for orthotropic plates of irregular shape. Critical buckling temperatures are

found in [6] for a square plate, a circular plate, and a square plate with rounded edges, under

fixed simple support conditions. This is done by using a conformal mapping technique and

Galerkin's method to solve the system of equations. Chen and Chen [7] use Galerkin's

method with displacement equations of equilibrium to study thermal buckling due to a uniform

change in temperature for antisymmetric angle-ply plates under clamped and fixed simple

support boundary conditions. For all cases considered, the prebuckling solutions are trivial.

Results are given showing the effects of ply angle, aspect ratio, a/b, modulus ratio, E_/Ez, and

thermal expansion coefficient ratio, =l/=z, on the buckling temperature.
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Thangaratnam,et al. [8] employthefinite-elementmethodto studythethermalbuckling

ofsymmetricandantisymmetriccross-plyandangle-plylaminates.Prebucklingsolutionsare

obtainedby minimizingthe potentialenergywith respectto the generalizeddisplacement

vectoroftheelementused.Forplateswithclampededgesandbothfixedandslidingsimple

supportboundaryconditions,theeffecton the bucklingtemperatureof varyingaspectratio,

modulusratio,thermalexpansion coeff;,¢lent ratio, and number of layers is examined. They

find that the buckling temperature for the clamped plate is always higher than for a simply

supported plate. The buckling temperature is determined to decrease with increasing

modulus ratio, and with increasing expansion coefficient ratio (for =1 > 0). The variation of

the buckling temperature with fiber orientation 8 is found to be significantly influenced by the

plate aspect ratio.

Many other studies in thermal buckling of fiber-reinforced plates have been conducted

by Tauchert, together with Huang [g,10], or alone [11]. In [g] the thermal buckling of symmetric

angle-ply laminates is investigated for plates with both fixed and sliding simple support

boundary conditions. Buckling and prebuckling equations are formulated using variational

methods and solved using the Rayleigh-Ritz technique. For plates with fixed simple supports,

the prebuckling solution is found to be trivial. However, for plates with sliding simple supports

and an odd number of layers, the prebuckling stress resultants are found to vary throughout

the laminate. This is due to the presence of AI=, At=, and N_ terms for the case of an odd

number of layers. Numerical results are given showing the effects of aspect ratio, number of

layers, and ply angle on the buckling temperature and associated mode shape. Using dis-

placement equations of equilibrium, thermal buckling and prebuckling equations are devel-

oped in [10] for thin anti-symmetric angle-ply laminates. These are solved using an assumed

double series solution for plates subject to sliding simple support boundary conditions. For

this case, the prebuckling solutions are trivial. The effects of ply angle, aspect ratio, and

number of layers on the critical buckling temperature are investigated. The work done in [10]

is extended in [11] for thick anti-symmetric angle-ply plates by including transverse normal

and shear deformations in the original formulation. As in [10], all prebuckling solutions are
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againfoundto betrivial. Theeffectsof plyangle,aspectratio,andspan-to-thicknessratioon

bucklingtemperatureareconsideredandthe resultsarecomparedto thoseinobtained[10].

Anoptimizationprocedureis alsoproposedin [11]whichusedPowell'smethodto maximize

resistancetothermalbucklingusingply angle as the design parameter.

Few papers are available addressing the issue of thermal postbuckling of composite

plates. As mentioned previously, Stavsky [4] develops thermal postbuckling equations for thin

anisotroplc plates that are heterogeneous through the thickness. Biswas [12] derives gov-

erning equations in terms of displacements and Airy's stress function for the nonlinear anal-

ysis of heated orthotropic plates. Using Galerkin's method, a one-term solution is obtained

in [12] for plates with fixed simple supports subjected to a temperature gradient that is linear

through the thickness. Results for deflections and membrane stress are given for plates with

various aspect ratios. Chen and Chen [13] also study the postbuckling of antisymmetri¢

angle-ply plates with sliding simple supports under a 'tent shaped' thermal field using the

finite-element method. Results are given for plates with various ply angles, numbers of layers,

and aspect ratios.

Huang and Tauchert examine thermal postbuckling of anti-symmetric angle-ply laminates

due to an uniform increase in temperature in [10] and [14]. In both studies, the plates have

sliding simple support boundary conditions. Double series expressions are assumed for the

displacements and the total potential energy of the laminate is minimized at each temperature

increment with respect to the coefficients of these series using Powell's method. Results are

given showing the effects of ply angle and number of layers on the plate's response. Huang

and Tauchert [15] have also studied the large deformation of antisymmetric angle-ply lami-

nates with sliding simple supports due to nonuniform temperature Ioadings. Both an inplane

parabolic temperature field and a temperature gradient that is linear through the thickness

of the plate are considered. Using the same method as In [10] and [14], the response of plates

to these thermal fields is studied for laminates with various aspect ratios, ply angles, and

numbers of layers. These results are compared with the results obtained from the small-

deformation formulation developed by Wu and Tauchert [16,17].
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All of the paperscitedabovearepurelyanalytical.Noexperimentalresultsappearto

beavailablefor the thermal buckling or postbuckling of fiber-reinforced composite plates, In

addition, no attention has been given to material axis skewing, nor to the influence of initial

out-o.f-plane deflections.

10
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3.0 DescdpUon of Problem and Solution Approach

In this chapter a description of the problem studied and a general discussion of the ap-

proaches to the various solutions are given, The nomenclature to be used in the following

chapters is also introduced.

3.1 Description of Problem

Consider a rectangular plate of length a in the x direction, width b in y direction, and

thickness H. The temperature change, AT, is, in general, a function of the spatial location x,

y, and z. As shown in Fig. 1, the reference coordinate system has its origin at one corner of

the plate. The x-y plane is coincident with the geometric midplane of the plate, and the z axis

is perpendicular to this plane. As usual, the geometric midplane will be the reference surface

of the plate. The plates under consideration are symmetrically laminated. Only thin plates

are studied. In the laminate nomenclature the orientation of the layers is defined relative to

the +x axis, Two sets of boundary conditions, fixed and sliding simple supports, are consid-

ered. For fixed simple support conditions, all four edges are fixed against inplane normal and

Description of Problem and Solution Approach 11



Z

H
X

AT(x,y,z)

Fig. 1. Description of Problem.
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tangentialdisplacements,andout-of-planedisplacements.Forslidingsimplesupports,all

fouredges are fixed against inplane normal displacements and out-of-plane displacements,

but are free to move, or 'slide', tangentially. The sliding is assumed to be frictionless. For

both support conditions there are zero moments along the edges. Explicitly stated, the

boundary conditions for the fixed simple support conditions are,

at x=O, a:

i) u° = 0

ii) v° = 0

iii) w° = 0

iv) M x = 0.

(3.1a)

at y=0, b:

i) u°=O

ii) v ° = 0

iii) w ° = 0

iv) My = 0.

(3.1b)

For the sliding simple supports,

at x=0, a:

i) u° = 0

ii) Nxy = 0

iii) w° = 0

iv) M x = O.

(3.2a)

at y=0, b:

i) Nxy = 0

ii) v° = 0

iii) w° = 0

iv) My = O.

(3.2b)

The topics of specific interest are:

1. Buckling due to a uniform temperature change;
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2. Bucklingdue to a temperature change that varies linearly with x;

3. Postbuckling due to a uniform temperature change;

4. Geometrically nonlinear response due to a temperature field that is uniform in x and y,

but which varies slightly through the thickness of the plate.

5. Geometrically nonlinear response due to a uniform temperature change and lack of initial

flatness;

Also of interest in this study are the effects on thermal buckling, postbuckiing, and

imperfection response of the laminate material axes being rotated inplane by some angle =

relative to the +x axis. Specifically, if a ( -t- 45/0/90)s laminate is rotated by _(= 30°, the re-

sulting laminate can be thought of as a ( +75/- 15/+ 30/- 60)s laminate. Such skewing of

material axes relative to the support boundaries could well be the situation for a tailored

structure. The angle = is measured with respect to the +x axis and is shown in Fig. 1.

3.2 Solution Approach

Energy and variational methods are well suited to this study. Equilibrium conditions are

obtained by setting the first variation of the total potential energy to zero. Stability of the

equilibrium conditions can then be determined by examining the second variation of the total

potential energy. The Trefftz stability criterion [18] states that the transition from stable to

unstable equilibrium occurs when the first variation of the second variation goes to zero. If

the second variation is identically zero for some nonzero variations in the displacements at

equilibrium, then the third variation must be examined, and so on. In the framework of these

variational approaches, approximate solutions are sought using the Rayleigh-Ritz method.
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With this approach in mind, the total potential energy of the plate is given by:

_r= - ax)_x + (_ry- _y)_y + ('rxy--rxy)Yxy}dxdydz. (3.3).

Note that no external work terms are given in eqn. 1 because there are no loads applied to

the plate and the boundaries are stationary or considered frictionless. The stress components

superscribed with a "P" denote preloading effects. In this study they will always be due, at

least, to thermally-induced deformation, but may also be due, for example, to imperfections

in the plate. They will be defined shortly. The strains in the energy expression are given by

O O
_x = Cx + ZKx

0 ZK_gy = _:y +

0 0

Yxy -----"7xy + ZKXy,

(3.4).

where the quantities superscribed with a zero are reference surface strains and curvatures.

These quantities are, of course, functions of x and y. Including the effects of moderate ro-

tations, the reference surface strains are

o au ° 1 Ro2 . o Onv° 02
,x=--_-_+T_x ,y=-_- + _y

o _u ° _v° + o o
_Y=_+ ax #x#y,

(3.5)

where

_W °
#x°= _w° and /Ty=--- (3.6)

c_x _y

are identified with cross-sectional rotations. The reference surface curvatures are given by

o ° o o
_x- ax ; Ky=_ ; _xy=_'l" ax (3.7)
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Thestressesin theenergyexpressionaregivenbytherelations

Oy=_12(,x- .x_)+_2_(._-,;)÷_6/_xy- _;_)

These may be rewritten as

ay = Q12_:x Jr Q22_y Jr Q26Yxy - o';

•xy Q_6_x+ Q26_y+ Q66_xy P= _ ,rxy.

In eqn. 3.9, the stress components denoting preloading effects are

p -- p -- p -- p
o'x = Qll,x + Q12_y 4- Q16)'xy

p -- p -- p -- p
O'y = Q12¢x + Q22_;y + Q26Yxy

p -- p -- p -- p
"rxy = Q16'x + Q26_y + Q66Yxy,

(3.8)

(3.9)

(3.10)

where _, _, and _,_,are the strains due to preloading effects.

Substituting the strains into the energy expression, eqn. 3.3, yields

+H

lr, r ° -T_(uo,vO,wO)=7 JoJ0f-._{( _-°x%°x+_o)+(o_o;)(_+z_;)
2

Jr (Txy P O O--"rxy)(),xy Jr ZKxy)}dxdydz.

(3.11)

Then, integrating with respect to z, through the thickness of the laminate, results in

.(uOvOwO)= f f{(._.P)O+(._ .;)°:+
Jr (M x P o P o _-- Mx)K x -4-(My- My)Ky + (Mxy Mxy)Kxy}dxdy,p o

(3.12)

where the stress resultants have the usual definitions for symmetric laminates, namely
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+H

Nx f H'_'-axdZ o o o P= = AlI_: x "t- A12¢y Jr A16Yxy Nx
2

+H

Ny = f--2"- o o o p--H crydz = A12_ x H- A22¢ y Jr A26Yxy - Ny
2
+H

Nxy=;__-" o o o -- PH "rxydZ = A16_x "#"A26_y -#" A66Yxy Nxy
2

+H

Mx = f-'_" o o o p-H ZcrxdZ = D11Kx -I- 012Ky "4-D16_xy -- M x

2

+H

My = f-'2-" o o o p-H ZcrydZ = D12_x + O22_:y + D26_xy _ My
2

+H

Mxy = fT o o o p
--H Z_ydZ -- D16K x 4'- O26Ky 4- D66Kxy _ Mxy .
2

(3.13)

In the above,
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+H +H

T p

P =f-H (Qll_xNx = f--H axdZ T -- p

2 2

+H +H

-T p

N; f_H _ydZ T-- p= _ = f-_H (Q12'x
2 2

+H +H

---_-p --_- p
P =f-H (Q16_xNxy : f--H "rxydZ

2 2

+H +H

f H Z_xdZ f -- P-T- p = 2 (.Q11 t,x
P

Mx = -H

2 2

+H +H

: ZO"y dz = (Q12_x
My -._.H_H -H

2 2

+H +H

MPy_ CT p rT,- p
: J-H ZTxydZ : LH__ t Q16sx

2 2

p _ p
+ Q12ay + Qls)'xy)dZ

-- p -- p
+ Q22ay + Q267xy)dZ

-- p -- p
+ Q26_y + Q6sYxy)dZ

-- p -- p
+ Q12_y + Q16Yxy)Zdz

- p -- p
+ Q22_y + Q267xy)Zdz

-- p -- p
+ Q26¢y + Q66Yxy)Zdz.

(3.14)

These are the equivalent preloading stress resultants.

The notation

,, = ,,(u°, v°, w°) (3.1s)

is being used to indicate that the total potential energy is a function of the displacements and

that variations in the total potential energy will be taken with respect to these kinematic

quantities. To this end, consider the increment, or variation, in the total potential energy due

to increments in the displacements. Specifically,

u°--,u° + ,u? • v°-v ° + ,v? ; w°--,w° + ,w? (3.16)

The variables ut, v_', and w_' are functions of x and y which satisfy the kinematic constraints

of the reference surface displacements u°,v °, and w °, respectively, and ¢ is a small scalar

parameter. The infinitesimal scale associated with variations can be considered to be asso-

ciated with the parameter _ The following interpretation can be given:
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_U D : _-U_

6V ° = _V_

_W 0 = _:W?,

(3.17)

where 6 denotes the traditional variational operator. The increments in strain are given by

substituting the increments in displacements into the basic definitions of strain. Specifically,

o o 0(u°+,u_) 1 o
'_ + _ - ax + T (#o,+ ,#_,). (3.18)

with

_o _wt= ax (3.19)

As a result of gathering powers of _.,

2 o
&so = _o +_ _x=, (3.20)

where

o #U? o o o 1 o 2
_x, = a"'x" + #xfx, ; _x, = _- #x, . (3.21)

Similarly,

2 o

AyxOy o 2 o=_7xy I+¢ Yxyz,
(3.22)

with

Description of Problem and Solution Approach 19



o av_ o o . o I.o2 o aw_'
_y,- _-_ +,By#y, , _yz=2-_'y, ; with #y,= ay

and

o au_' av_ oo oo o o o

and
O O

o o o
_:xl -- C3X " KYl =" 0y ; l_xYl = at"-0x '

(3.23)

The increments in the stress resultants follow directly from eqn. 3.13. These are

AN x = A11ACx + A12A_y + A16AYxy = _Nxl + ¢2Nx2

ANy = A12A¢ x + A22A£y + A26Ayxy = _Ny 1 + ¢2Ny=

ANxy = A16_x A + A26A_y + A66A_/xy = _Nxy 1 + r2Nxy=

&M x = Dll&_ x + D12,'_y + D16&Kxy = ¢Mxl

&My = D12A_ x + D22,4,Ky + D26A_xy = _My 1

AMxy = D16A_ x + D26A_y + D66,%Cxy = ¢Mxy 1,

(3.24)

where the superscript zero has been dropped for convenience. By gathering powers of s,

convenient and alternate definitions of the increments in the stress resultants can obtained.

These are

Nxl

Ny 1 =

Nxy 1 =

Nxz =

Ny z =

Nxy z =

Mx, =

My 1 =

Mxy 1 =

A11¢xl 4- A12sy _ + A16Yxy 1

A12cxl 4- A22t.yl -I- A26Yxy 1

A16¢xl -{- A26¢y 1 + A66Yxyl

All,x= -F A12¢y z -t- A16Yxy z

A12_x t + A22syt + A26Yxyz

A16_x z + A26¢y= + A66Yxyz

D11Kxl 4- D12Ky I -f- D16Kxy ,

D12Kxl -t- D22Ky 1 + D26Kxy 1

D16Kx I + D26Kyj + D66Kxy_.

(3.25)

With the increment in the displacements, there is a variation, or increment, in the total po-

tential energy of the form

Descrlption of Problem and Solution Approach 20



,_+A,,= ,_u° + ,u?.v° + ,v?,w°+ ,w?_). (3.26)

By gathering powers of the parameter _, the variation in the total potential energy, A_r, can

be expressed as

A_t = _r 1 4- t.2_t2 + _.3tr3 + ¢4_ 4. (3.27)

The terms _t_,i = 1,4 are the first, second, third and fourth variations in the total potential en-

ergy. From these variations come the conditions for prebuckling, buckling, and postbuckling.

The conditions which govern prebuckling and postbuckling are given by

_lCu?,v?,w?)=0 (3.28)

This equation states that the displacements u°, v °, and w° are made stationary with respect

to the variations u_, v?, and w?. The first variation of the total potential energy can be written

as

/'r

j j{ o o o•trI = Nxcxl + Ny_yI + NxyYxyl

o MxyKxy_}dxdy"+ MyKy 1 + o

+ MxKO1

(3.29)

For buckling studies the Trefftz criterion,

,_,,=(u?,v?.w?)=o (3.3o)

is used. This equation states that the second variation of the total potential energy is sta-

tionary with respect to variations of the displacements u_',v_', and w?, when transition from

stable to unstable equilibrium occurs. The first variation of the second variation of the total

potential energy is given by
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ffl o o o o_n 2 = Nx_°xz + Nyc_y 2 + Nxy6Yxyz + Nx_&_x_+ Ny16_.y I

o o o }dxdy.-F Nxyl_Yxy 1 "F Mxl_Kxl "¢- Myl_Ky 1 "+- MxYl(SKx°yl

(3.31)

The Rayleigh-Ritz method will be used in conjunction with the first variation and the first

variation of the second variation to study plate response. In either case, with a Rayleigh-Ritz

approach, the variational process focuses on the variations of the amplitudes of the assumed

functions used to approximate response. These variational steps lead to algebraic equations.

For the prebuckling and buckling problems these equations are linear. For the buckling

problem, these linear equations form the basis for eigentemperature extraction. For the

postbuckling problem the equations are nonlinear and must be solved numerically for the re-

sponse of the plate as a function of temperature. For determining the response in the pres-

ence of imperfections, the algebraic equations are also nonlinear.
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4.0 Buckling Response

Due to the presence of edge restraints, the thermally-induced expansion of a composite

plate may cause the plate to buckle. The thermal buckling problem consists, primarily, of

finding the temperature at which this phenomenon occurs. In this chapter the buckling prob-

lem is discussed in detail. Inherent in this discussion is a more detailed investigation of the

prebuckling problem and its role in the buckling problem. The details of the various boundary

conditions and temperature distributions are first discussed, then numerical results for the

various cases are presented.

4.1 Formulation

For the buckling problem, the preloading effects are assumed to be due only to thermally

induced deformations. In this case
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p T
_x = _x = °cxAT

p T
E:y= &y _ _yAT

p T
?xy ----"Yxy ----°_xyAT,

(4.1)

where ¢., =y, and a_ are the coefficients of thermal expansion in the x-y-z coordinate system

and the superscript "T" denotes the fact that the preloading effects are thermallyinduced.

Likewise, the equivalent preloading stress resultants become equivalent thermal stress re-

sultants:

+H +H

NP= T T T 2

2 2
+H +H

Ny = Ny = -H

2 2

+H +H

I IS -NxPy= NxTy = --mR "rxydZ = .=._ {Q1Sax + Q26=y + Q6s=xy}ATdz
2 2

+H +H

2 2

+H +H

2 2

+H +H

+ Q12_y "1" Q16axy}ATzdz

+ Q22=y + Q26¢xy}ATzdz

= f 2 {_160_x J¢ _260Cy "{" _66¢xy}ATzdz '-H
2

(4.2)

In the above a=T, a_ and T_, are the thermal stresses. These are the stresses at a point if the

composite is fully constrained from any deformation. For these buckling studies it is further

assumed that the temperature distribution is uniform through the thickness of the plate, i.e.,

AT = AT(x, y). For a symmetrically laminated plate, this implies that

Mxr r T= My = Mxy = 0. (4.3)
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In addition, only initially fiat plates will be considered. As the only non-zero equivalent ther-

mal stress resultants are inplane, no prebuckling out-of-plane displacements should occur.

Hence,

o - aw° =0 (4.4)o -_w° =0 and py#x = ax = ay '

This simplifies considerably the expressions for _ ..... N,vl. Specifically

O

£X I

au_ o 0v_ o 0u_ av?
+ (4.s)

="_-x ; _Yl="_y ; Yxyl- ay _x '

As a result of these simplifications, the first variation of the total potential energy equated to

zero can be written as

r rf ou_ ov_ / ou_ av__'_
(4.6)

for every u_' and v_'. This is the equation governing prebuckling. The first variation of the

second variation of the total potential energy, when written in terms of displacements, also

simplifies considerably. This simplification, equated to zero, becomes

f{ aw_ a6w_ ffw_ a6w_ (aw_ a6w_ aw_ a6w_ 1

+Nx, a-'---_--+Ny, T+Nxy, T+T)

: 6w? :6w_ : 6w?"_
- Mx I Ox2 My 1 aY2 2Mxy 1 0xc_y jdxdy : O,

(4.7)

This expression can be further simplified by considering the quantity
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_+ Ny _--y + Nxy I "_'_ "I- --_'- dxdy.
(4.8)

In the context of a Rayleigh-Ritz formulation, u_' and v_ will be assumed to be of the form

u_(x, Y) = 2 _'_,Ulmn_lr.n(x, Y)
m n

m n

(4.9)

where u_,.. and vim, are the to-be-determined constants and _1,.. and _1,,. are known functional

forms. With eqn. 4.9 the expression of eqn. 4.8 becomes

'II "1-nc_1"" (SUlm.+ Ny_+
+ Nxy_ ay / ay Nxyl

(4.10)

Since these are the only terms in eqn. 4.7 that involve (_u_,.. and 6v_,.., it is clear that the ex-

pression of eqn. 4.10 must be zero for 6_= to be zero. This means

ul,.. = vl,.. = 0 for all m and n (4.11)

or

U_(X, y) -- v?(x, y) = 0. (4.12)

As a result, eqn. 4.7 can be reduced to
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_r2 = Nx ax _x + Ny 0y (3y + Nxy c_x 0y + _y

a2aw_ }
- Mx 1 02_w? 02(5w_) 2Mxy I dxdy = O.

(3x2 MY1 _y2 Ox_-'_--

(4.13)

This is the form that will be used to study buckling. To this point the equations developed are

valid for any set of edge conditions, and any temperature distribution such that the thermal

moments are zero. In this study, as mentioned previously, two boundary conditions, fixed and

sliding simple supports, are considered. These boundary conditions were given previously

and are repeated here for convenience. They are:

at

Fixed:

x=O, a:

i) u°=O

ii) v° = 0

iii) w° = 0

iv) M x = O.

(4.14a)

at y=O, b:

i) u° = 0

ii) v ° = 0

iii) w ° = 0

iv) My = O.

(4.14b)

at

Sliding:

x=O, a:

i) u° = 0

ii) Nxy = 0

iii) w ° = 0

iv) M x = O.

(4.15a)
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at y=O, b:

i) Nxy = 0

ii) v° = 0

iii) w° = 0

iv) My = O.

(4.15b)

The sliding boundary condition implies that there is no resistance to the inplane shear force

at the edge. _

Two temperature distributions will be considered. The first, a uniform change in tem-

perature, is actually a subclass of the second, a change in temperature which varies linearly

in the x direction. These two conditions can be expressed as

AT= c

and

AT= c+dx,
(4.16)

c and d being constants. With the second form, the temperature change at x=0 is c, while the

temperature change at x=a is c + da. If d=0 the change in temperature is uniform. These

two temperature distributions will be considered separately. Prebuckling and buckling for

these temperature distributions and the various boundary conditions will be discussed next.

4.1.1 Uniform Change in Temperature: AT = ¢

4.1.1.1 Fixed Simple Supports

In order to obtain solutions using the Rayleigh-Ritz method, the following forms are as-

sumed for the prebuckling displacements u", v_, and w° in the case of fixed simple supports:
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I J

oo_x,_=Z Eu,:,,(_-),,o(_)
i=lj=l

I J

I=1J=I

w°(x, y) = 0.

(4.17)

These forms satisfy the kinematic boundary conditions of eqn. 4.14. These forms follow the

work of Huang and Tauchert [9]. For this case, the prebuckling solution is trivial. This can

be seen as follows: The prebuckling equation, 4.6, can be expanded to obtain

ss{,uo,.uo(.vo,.uo.uo,.vo).,.vonl = A11 #x #x + A12 8y 8x + ax (_y + A22"_y Oy

( 0u° 06v° )
8u ° 86u ° o%,° 86u ° 8u ° a6u ° +

+Als "By 8x + 0x 0x + 0x _y 8x 0x

( _° 06v° )
8u° 86v° 8v° _6v ° _v° _u ° +

+ A26 ay _y + ax 8y" + c_y 8y 8y 0x

/au ° av°_(a6u°+a6v°'_

-"" _x -y_ ,-xy\_ + dxdy=0,

(4.18)

where eqn. 3.5 and 3.13 have been used with eqn. 4.2 and 4.5. The expression

:S( x.,UO+Ny_+Nxy _-t" dxdy
(4.19)

becomes the forcing vector in the system of linear equations resulting from substitution of the

assumed function of eqn 4.17 into eqn. 4.18. It is clear that uq and v_j will only be non-zero

when the expression of eqn. 4.19 is non-zero.
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Prebucklingcanbe investigatedmoreeasily for each temperature distribution by first

expressing the thermal stress resultants as

NxT= NxTAT

T= _TNy (4.20)

where the barred quantities are thermal stress resultants per unit change in temperature,

These quantities are constant for a specific laminate and consist only of layer material prop-

erties and layer thicknesses. Using this scheme, it is clear that the expression of eqn. 4.19,

and therefore u° and v°, are zero for the case of a spatially uniform change in temperature and

fixed simple supports. The inplane stress resultants are then uniform within the plate and are

given by

T --T
N x=- N x : - NxAT

T --T
Ny Ny : - Ny_T

T "T
Nxy Nxy -- _ NxyZ_T.

(4.21)

Once the prebuckling problem has been solved, the buckling problem can be addressed.

The inplane stress resultants of eqn. 4.21 are substituted into eqn. 4.13. This results in the

following form for the first variation of the second variation:

a23w_
- Mxl My I

ax 2

--TNyAT_(_v_ Ta&W_ _ _xTyAT/'_ _w°c_x a6w°_y

a26w_ }
02_w_ 2Mxyl _ dxdy,

(_y2 Oxay

(4.22)
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where,again,N_,N_,andN_,areknownconstants,andAT is the to-be-determined buckling

temperature. A double sine series is then assumed for the buckling displacement, w_'. This

series is

M N

= Ew o,,0("--a--- )sin . (4.23)
m:ln=l

Note that while this satisfies the geometric boundary conditions of eqn. 4.14, it does not satisfy

the moment boundary conditions. Substituting the expression of eqn. 4.23 into eqn. 4.22, and

performing the spatial integration results in a set of M x N linear simultaneous homogeneous

equations in w,,,. Eigentemperature extraction is then performed to find the values of &T for

which the coefficient matrix becomes singular. The smallest value of &T for which this occurs

is the critical buckling temperature.

4.1.1.2 Sliding Simple Supports

Following the work of Huang and Taucherl [9] as before, the following forms are assumed

for the prebuckling displacements in the case of sliding simple supports:

I J

U°(X' Y)= E E uljsin('-'a-i_rx)cos( _ )
I=lj=O

I J

V°(X' Y)-- E E vIjc°s(Tilrx )sin(-_--}
I=Oj=l

w°(x, y) = O.

(4.24)

Note that these assumed solutions satisfy identically the geometric boundary conditions, but

not the force boundary conditions of eqn. 4.15. Again using eqn. 4.18 and considering the

expression given in eqn. 4.19, it can be seen that, for plates with sliding simple supports, if the

laminate is such that the material property N_ = O, the prebuckling solution is trivial. This is
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the situation, for instance, for quasi-isotropic laminates. For these cases then, the prebuckling

inplane stress resultants are given, as before, by eqn. 4.21. However for laminates such as

the off-axis orthotropic laminate, for which N_ is not zero, the prebuckling solution is not so

simple. In these cases the inplane displacements, hence the prebuckling stress resultants,

vary throughout the laminate. This nontrivial prebuckling problem is solved by substituting the

assumed solution form of eqn. 4.24 into the expression for the first variation, eqn. 4.18. Per-

forming the spatial integration leads to a linear set of algebraic equations for u_jand v_j. With

these solved for, the stress resultants can be determined for use in eqn. 4.13. The stress re-

sultants, as stated previously, vary with x and y. Also they are linearly proportional to the

temperature change, AT. Thus they are of the form

Nx(X ' y) = Nx(X, y)AT

Ny(x, y) = Ny(X, y)AT

Nxy(X , y) = Nxy(X, y)AT.

(4.25)

The second variation of eqn. 4.22 now takes the form

__x ax + NyAT_y ay + NxyAT ax

a a 2.
-- Mxl ax 2 MY1 ay2 2Mxyl_ax_y jdxdy'

ay + _/ _x ;

(4.26)

The double series of eqn. 4.23 is again assumed for the buckling displacement w?(x, y). With

this form substituted into eqn. 4.26, and with the functional form of Nx, Ny and N_ now known,

the spatial integral can be carried out. An eigenvalue problem for AT results. It is important

to note that since the assumed solution for w_ and the prebuckling solution are the same for

both fixed and sliding simple supports when the laminate is such that N;=O, these plates
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have the same buckling solution for both sets of boundary conditions when buckling is due to

a uniform change in temperature.

4.1.2 Linearly Varying Change in Temperature: AT = c + dx

4.1.2.1 Fixed Simple Supports

For a linearly varying temperature distribution, the inplane thermal stress resultants can

be written as

T --T --T
N X = Nx_T = Nx(C + dx)
T --T --T

Ny = NyAT = Ny(C + dx)

T --T T

Nxy = Nxy_T = Nxy(C + dx).

(4.27)

Using eqn. 4.27, the expression in eqn. 4.19 can be expanded as follows

-,< )}=-c _Tau ° --Tav° au° av°
"_-_--i-Ny -_-- -kNxy --_--"i-"-_'-x dxdy

_0 s{ :ouo,ovo, 0uo+ Ny _ + Nxy_,_ + _ xdxdy.

(4.28)

The series solutions for the prebuckling displacements are assumed to be the same for this

case as for the case of fixed simple supports and a uniform change in temperature, given in

eqn. 4.17. As a result, the coefficient of c has already been determined to be zero. The co-

efficient of d, however, is nonzero. Because of the forms of eqn. 4.17 and 4.28, the assumed

solutions for u• and v° can be expressed as linear functions of d, i.e.,
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u°(x, y) = d_°(x, y)

v°(x, y) = d?(x, y).
(4.29)

The functional forms assumed for 5°(x, y) and 9°(x, y) are as in eqn. 4.17, namely

I J

,o,,=ZZ
ill j=l

I J

_(x,. y) _-_ - . i_rx . jTry=
i=lj=l

(4.30)

Substituting eqn. 4.30 into eqn. 4.28, and those results into eqn. 4.18, and performing the spa-

tial integration leads to a set of linear algebraic equations for 5_j and 9_j. Note, at this point d

is not involved.

With 5ij and 9_jknown, the prebuckling stress resultants are now known to within the pa-

rameters c and d and are given by

/ _ _ t _°+_o___T(_Nx=d Al1-_-_+A12--_--÷A16_ 0× /)

Uy=d AI2--_-+A22-E-y+A26 -_+'-_-x

N_y= d A_6-'N-x+ A26_ + A66 _
+

+ dx)

+ dx)

_o_ __T(_+_x)
_× l/

(4.31)

To determine the buckling characteristics, these quantities must be substituted into eqn.

4.13 along with the assumed solution for the buckling displacement, wf. The buckling dis-

placements are again taken to be of the form of eqn. 4.23. When the spatial integrals in eqn.

4.13 are carried out, an eigenvalue problem involving c and d results. For this situation, it is

necessary to find the relation between c and d which will cause buckling. Operationally this

means that either d is specified and the eigentemperature problem is solved for the lowest

value of c necessary to cause buckling, or vice versa.
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4.1.2.2 Sliding Simple Supports

The case of a linearly varying temperature and sliding simple supports is the most com-

plicated buckling condition studied. Equation 4.28 is again the key equation. For this case the

first term on the right hand side of eqn. 4.28 is not zero and thus the prebuckling displace-

ments are linear functions of both c and d, namely

^o
u°(x, y) = cu (x, y) + d_(x, y)

vO(x,y) ^ocv (x, y)+ dv-°(x, y).
(4.32)

The functional forms in this equation are assumed to be as in eqn. 4.24, the form used for

sliding simple supports and a uniform temperature. Specifically

I J

(_°(x, y), u-°(x, y))= _ _ (_Jij, 5u)sin( -_- )cos( _ )
i----lj=O

I J

(v_(x, y), v_(x, y))= _ _ (_/,j, _Ij)COS( _ )sin( -_ ).
I=Oj=l

(4.33)

These functional forms are substituted into eqno 4.18 and a set of linear equations for

u,J, _J, _'u, and _j result. The inplane stress resultants are now known and are of the form
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( Ao )_u_+ aO° A ( aG° _O°'_-_
Nx=C All _X A12--_ -'t- 16 k ay + c_X /

( 0_ av'° - /'aS ° ag°'__xTX)

_u_"+ A_2 + 26\ _ +Ny--'c A12 _x

'/" 8u° A _qo +'A ""_/fSu° 8q° '_x/
Nxy I ^_x° A _,o----C A16 "Jr 26

.(. _u° ^ _m
+ UtA16_ +"26 ay

+

+%6_ 0---7 +-_-) - _:yx) .

(4.34)

The assumed solution for w_ is again eqn. 4.23. Substituting eqn. 4.34 and eqn. 4.28 into

4.13, and carrying out the spatial integrals, results in another eigenvalue problem involving c

and d. The buckling characteristics are studied by solving, numerically, for a relation be-

tween c and d, either by specifying d and solving for the lowest value of c to cause buckling,

or vice versa.

This completes the formulation of the buckling problems studied. As can be seen, some

problems are quite involved, while others are simpler. In the next section, numerical results

will be presented which illustrate the influence of lamination sequence, skewing angle, plate

aspect ratio, boundary conditions, and temperature gradient on buckling. Convergence of the

prebuckling and buckling solutions will be discussed, as will the sensitivity of the results to

material properties. This latter study is useful because the material properties required for

a buckling analysis are not always known with certainty.
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4.2 Numerical Results

Numerical results are given to illustrate the influence of various factors on the thermal

buckling of symmetric composite plates. The material properties used in the following results

represent a graphite-reinforced composite. These properties are:

E1 = 22.5 Msi E2 = 1.17 Msi G12 = 0.66 Msi v12 = 0.22

_1 = -0.04 ppm/°F =2 = 16.7 ppm/°F (4.35)

These properties are defined in the principal material system of a layer and follow the usual

notation. Lamina thickness is 0.005 inches. The laminates that will be discussed in particular

are a quasi-isotropic ( -t- 45/0/90)s and an orthotropic ( + 45/0z)s. Off-axis skew angles for the

material axes are in the range -30°<=<30 °.

4.2.1 Uniform Change in Temperature: /tT = ¢

4.2.1.1 Convergence Characteristics: Trivial Prebuckling Solution

Since the Rayleigh-Ritz method is used here to obtain approximate solutions, the first

issue to be addressed is that of convergence. In order to study convergence in the buckling

solution, the case of fixed simple supports is considered first. This is because the prebuckling

solutions for this case are already known to be trivial. Thus only convergence of the series

representing the buckling displacement w_ needs to be considered. As an example, the con-

vergence characteristic of the solution for the buckling of a square, ( 4- 45/0=)s plate with fixed

simple supports is given in Table 1. The other laminates considered here required the same

number, or fewer, terms to be taken to obtain convergence of the buckling solution. This case
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isthususedasanexample.Toobtainnumericalresultsforthistable,a6In.by6in. laminate

is considered.Theconclusionsfromthetablearenot limitedbythesespecificdimensions.

Thesedimensionsare chosenbasedon futureexperimentalconsiderations.In Table1,

Mx Nisthenumberof"termstakenintheseriesforw_',AT1is thefirsteigentemperature(the

criticalbucklingtemperature),and_Tz is the second eigentemperature. In all cases, N is

taken to be equal to M, and the product of these numbers is reported. The product represents

the actual number of terms in the series for w_. Both AT_ and AT= are examined because when

using the Rayleigh-Ritz method, the lower eigenvalues tend to converge more rapidly than the

higher eigenvalues [19]. Thus _T1 should be well converged at the point where &T2 shows

convergence. By the same reasoning, because the eigenvectors tend to converge more

slowly than the eigenvalues, the largest elements in the first eigenvector, wl_ and wzz, are also

given as an indication of convergence. The eigensolver subroutine (IMSL math library sub-

routine G2CRG [20]) used in this study normalizes the eigenvector by its largest element, thus

the largest term, wll in this case, is always set to one. Attention should thus focus on w22, the

second element in the first eigenvector. As can be seen from Table 1, for this case of fixed

simple supports reasonably accurate convergence is achieved for M x N =49. Using

M x N = 49 results in a buckling temperature of 69.4°F. This will be considered the answer for

the case. In addition, the value of AT = 69.4°F will be referred to as AT* in the remainder of

the text.

The convergence characteristic of quasi-isotropic ( + 45/0/90)s plates with either fixed or

sliding simple supports and any material axis skew angle, and of orthotropic ( _+45/0=)s plates

for the case of no material axis skewing (= = 0 °) with sliding simple supports is also given by

Table 1. As discussed previously, these cases have a trivial prebuckling solution, and the

same series for w_' is used to represent buckling. Thus the convergence or'these cases follows

Table 1.
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Table1. BUCKLINGCONVERGENCESTUDYFORTHEUNIFORMTEMPERATURECASE:
(:L_-45/02)=PLATE,SQUARE,==0% FIXED SIMPLE SUPPORTS.

M x N_

1

4

9

16

25

36

49

64

&Tp

1.029

1,009

1,007

1.004

1.003

1.001

1,000

1,000

ATp

116.6

114.2

114.0

113.7

113.6

113.5

113.4

Wll

m

1.000

1.000

1.000

1.000

1.000

1.000

1.000

W22

0.0400

0.0420

0.0412

0.0417

0.0414

0.0415

0.0416

(1) M x N is the number of terms taken in the series for wf.

(2) Results normalized by &T*= 69.4°F, the temperature
considered here as the converged value. This represents the buckling
temperature for a 6 in. by 6 in. plate.
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4.2.1.2 Convergence Characteristics: Nontrivial Prebuckling Solution

To begin studying the convergence of a case for which the prebuckling solution is spa-

tially nonuniform, it is natural to begin by using the number of terms in the buckling solution

which resulted in convergence for the previous case. There are two approaches that may be

taken to study convergence. One approach is to consider the convergence of the prebuckling

solution separately from the buckling solution. The other approach is to consider only the

effect on the buckling solution of increasing the number of terms taken in the prebuckling

solution. The first approach requires a much larger number of terms to be taken in order to

reach convergence. The lack of convergence of the prebuckling solution does not seem to

have a serious effect on the buckling calculations. Therefore, because the buckling solution

is the primary focus in this study, and in the interest of economy, the latter approach is taken

here. The effect that the number of terms taken in the prebuckling solution, I x J, has on the

critical buckling temperature, as well as the effect of increasing the number of terms, M x N,

taken in the assumed solution for w_, are shown in Table 2. The specific case considered is

a square (-4-45/Oz)s laminate with it's material axes skewed by = = 30 ° and sliding simple

supports. This case represents an extreme in the spatial variation of the prebuckling solution.

The largest elements in the first eigenvector are again given as another indication of conver-

gence. Table 2 indicates that the same number of terms in the assumed solution for w_'which

provided convergence in the case of fixed simple supports and/or no material axis skewing

(Table 1, M x N =49) provides sufficient convergence in this case as well. Although a rela-

tively large number of terms must be taken in the prebuckling solution for the buckling solution

to converge, there is only about an 8% difference in the buckling temperature between using

a 1-term prebuckling solution and a 100-term prebuckling solution! This supports the earlier

statement that lack of convergence of the prebuckling solution is not a serious problem.

Henceforth, all buckling results reported for the case of sliding simple supports and a uniform

temperature change will use M x N =49 and I x J = 81, a well converged solution.
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Table2. PREBUCKLINGCONVERGENCESTUDYFORTHEUNIFORMTEMPERATURECASE:
(::L-45/0=)s PLATE,SQUARE,==30°,SLIDINGSIMPLESUPPORTS.

MxN = 25 MxN = 36

I x J AT_I) w. wz_ I x J w2=

1

4

9

16

25

36

49

64

81

100

0.719

0.697

0.679

0.677

0.671

0.669

0.667

0.666

0.662

0.662

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

0.04g7

0.0477

0.0544

0.0534

0.0538

0.0534

0.0537

0.0535

0.0535

0.0535

1

4

9

16

25

36

49

64

81

100

_T_) wll

0.718 1.000

0.694 1.OO0

0.677 1.000

0.674 1.000

0.669 1.000

0.667 1.000

0.666 1.000

0.664 1.000

0.661 1.000

0.661 1.000

0.0496

0.0474

0.0540

0.0537

0.0533

00534

0.0531

0.0535

0.0530

0.0530

MxN = 49 MxN = 64

I x J .'_T__) w. w22 I x J w_

0.0496

0.0477

0.0542

0.0541

0.0535

0.0537

0.0535

0.0532

0.0533

0.0533

1

4

9

16

25

36

49

64

81

100

1

4

9

16

25

36

49

64

81

100

1.000

1.000

1.000

1.000

I.OOO

1.000

1.000

1.000

1.000

1.000

_Tf) w.

0.715 1.000

0.693 1,000

0.677 1.000

0.673 1.000

0.667 I,OOO

0.666 1.000

0.664 1.000

0.662 1.OOO

0.661 1.000

0.661 1.000

0.716

0.694

0.677

0.674

0.667

0.666

0.664

0,662

0.661

0.661

0.0493

0.0475

0.0542

0.0538

0.0535

0.0534

0.0535

0.0532

0.0532

0.053t

(1) Normalized by &T* = 69.4°F, 6 in. by 6 in. plate used to
compute numerical results.
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4.2.1.3 Sensitivity Study

Having established the convergence of the buckling solution, the next issue to be con-

sidered here is the sensitivity of the buckling solution to variations in the material properties.

This gives an indication of the degree of uncertainty that may be present in the buckling sol-

ution due to uncertainty in the material properties. It also gives an indication of how the

buckling temperatures of plates with slightly different material systems would compare to the

buckling temperatures of the laminates considered in this study. The variation in the buckling

temperatures of four laminates with fixed simple supports resulting from varying each mate-

rial property, except _1, by + 10% is given in Table 3. The range of values given for =, rep-

resent the degree of uncertainty associated with a property value that is so close to zero. The

resulting buckling temperatures for each laminate are normalized by the buckling temperature

for that laminate which results from using the original material properties given in eqn. 4.35.

This buckling temperature is denoted as AT _=m. The value of &T _°" for each laminate is noted

in Table 3. This normalization allows a direct comparison of the percentage change in

buckling temperature, in each case, resulting from a percentage change in the given material

property, it is clear from Table 3 that the buckling temperature is most sensitive to =z, varying

by more than 10% as a result of a 10% variation in ==. It is likely that if ,,, were a larger

quantity, a similar relation might result, however, because =_ is so small, even a change in

sign results in less than an 8% variation in buckling temperature. Variations of ± 10% in E1

result in roughly a + 10% variation in buckling temperature, while the same variations in Ez

have the opposite effect, a +10% variation in E2 resulting in roughly a -10% variation in

buckling temperature. Variations of + 10% in Glz or in v_z result in a difference of 2% or less

in buckling temperature. Attention now turns to the influence of geometry, material axis

skewing, support conditions, and lamination sequence on the buckling characteristics.
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Table3. SENSITIVITYSTUDY FOR THE UNIFORM TEMPERATURE CASE: SQUARE PLATE, FIXED
SIMPLE SUPPORTS.

VARIABLE
PROPERTY

+ 10%
E1

-10%

+10%
Ez

-10%

+10%
Glz

-10%

+10%
1/12

-10%

+ .04E-6

(X1 = 0

-,04E-6

+ 10%

-10%

NORMALIZED BUCKLING TEMPERATURE

( + 4510/90)s
_{_---.0 °

_,T,_m= 694 (I)

( + 45/0/90)s
= 30 °

&T "°" = 51.3

( -t- 4510t)s
(X=O °

AT "°m = 69.4

( + 4510=)s
= = 30 °

AT '_m = 49.5

1.099 1,091 1.099 1,092

0.904 0,909 0.904 0.908

0.909 0.911 0.909 0,910

1.114 1.111 1.114 1,113

1.001 1.006 1.001 1.006

0,999 0.994 0.999 0.994

0,983 0.984 0.983 0.983

1,020 1,016 1.020 1,018

0,927 0.931 0,927 0.926

0,963 0,964 0.963 O.961

1.000 1.000 1.000 1.000

0.895 0.895 0,895 0.895

1.120 1.117 1,120 1.119

(1) _T '_m = buckling temperature using the nominal material properties
given in eqn. 4,35, 6 in. by 6 in. plate used to compute numerical results.
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4.2.1.4 Buckling Characteristics

The buckling temperatures of the two laminates as a function of principal material axis

skewing angle, =, are shown in Fig. 2 for aspect ratio a/b=1 and both sets of boundary con-

ditions. These results are based on 6 in. square plates and have been normalized by AT*, the

buckling temperature of the quasi-isotropic (+ 45/0/90)s laminate when = = 0 °. The actual

buckling temperature for this 8-layer 6 In. square laminate is AT* = 69.4°F. It is important to

note that this buckling temperature is quite high as compared to the buckling temperatures

of steel and aluminum plates for the same dimensions. For these materials the buckling

temperatures are AT = 8.7°F and AT = 4.2°F, respectively. Several interesting features re-

garding the buckling of the various cases are evident in Fig. 2. First, both laminates under

either boundary condition experience a decrease in buckling temperature when the material

axes are skewed, i. e., ==#0. For the so-called quasi-isotropic laminate, the fact that the

buckling temperature varies with = serves as a reminder that the term quasi-lsotropic really

refers only to inplane properties of the laminate. The out-of-plane properties are not quasi-

isotropic and this results in a dependence of the buckling temperature on skew angle in much

the same way that the buckling temperature of a ( + 45/02)s laminate depends on skew angle.

As mentioned above, the buckling response for the quasi-isotropic laminate is the same for

both fixed and sliding simple supports. This is due to the fact that for this laminate the ma-

terial property N_ = 0 is independent of =. Differences in the buckling temperatures due to the

two types of edge conditions exist only for the orthotropic ( -t-45/0z)s laminate with _0 °. This

is because N_,_0 for these cases, hence there is a non-zero prebuckling solution for N_ for the

sliding simple support case. Indeed, the differences between the buckling solutions for the

orthotropic plates with fixed and with sliding boundary conditions increase as the magnitude

of =, and hence N_, increases. However, even at = = 30o the difference between the buckling

temperatures for the two sets of boundary conditions is only about 10%. Due to the influence

of the prebuckling solution on the buckling problem, there is a greater difference between the

buckling temperatures of the orthotroplc laminate with fixed simple supports and the
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I [+45/-45/0/0]s [+45/-45/0/90]s [+45/-45/0/0]sF!xed S.._S. Fixed an d.S!i.d.ing S.S. Sl!di.ngS.S.

Fig. 2. The Influence of skew angle, boundary conditions, and lamination on the buckling tem-
perature of square plates.
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supports and the orthotropic laminate with sliding simple supports than there is between the

buckling temperatures of the quasi-isotropic laminate and the orthotropic laminate, both with

fixed simple supports. That all cases vary In roughly the same fashion with = is largely due

to similarities in their D matrices, in tact, by examining the algebra associated with the

eigenvalue problem, it can be seen that the buckling temperature of a square laminate with

fixed simple supports depends strongly on the quantity

D = Dll + 2(D12 + 2Dss) + D22. (4.36)

This quantity has the same value for both laminates for all values of =. In Fig. 3 the variation

with skew angle of this quantity normalized by D*, the value of"this quantity at = = 0°, is illus-

trated. It is seen that the variation of the above quantity with skew angle and the variation of

the buckling temperatures of the fixed simple support plates with skew angle are very similar.

The quantity defined in eqn. 4.36 is actually the the numerator in the expression for AT in the

1-term buckling solution for a square plate, i. e., M x N = 1. By using the normalized values,

the quantity O can often give an estimate of the buckling temperatures of these plates at var-

ious skew angles as good, or better, than that obtained from the 1-term buckling solution. This

estimate, like the 1-term solution [11], is less accurate for laminates in which DI=, D=_and NTw

are larger, and becomes more accurate as these terms become small when compared with

D, and _=Tand N_, respectively. The small differences that do exist between the quasi-isotopic

and orthotropic laminates with fixed simple supports are due largely to differences in Die, D=s

m

and N_, for the two laminates at various values of =. At = = 0 °, where N_ = 0 and D_eand D.

are the same for both laminates, the buckling temperatures are the same to three significant

digits for both square laminates.

Plates with rectangular planforms, a/b=2, are compared with square plates in Fig. 4.

These results are based on a plate width of b = 6 in,. It is seen that rectangular planform

plates have lower buckling temperatures than square plates. For rectangular geometry and

zero skew angle the two laminates do not give identical results. This is in contrast to the

identical results for square laminates. In addition, in each case for the rectangular plates the

Buckling Response 46



1.20

1.00

0.80

0.60

0.40

f
o_,L

, I t I ,

-20.00 -10.00

i I , I ,

0.00 10.00 20.00 30.00

a, degrees

[+45/-45/0/0]s [+45/-45/0/90]s [+451-45/0/0]s D/D* I

F!xed. S__S,. Fixed a,nd.S!id!ng S.S. Sl!ding S.,S. -- I

Fig. 3. The influence of skew angle on the buckling temperature end D for square plates.
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Fig, 4. The influence of skew angle end plate geometry on the buckling temperature.
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buckling temperature is monotonically increasing with skew angle. The quasi-isotropic plate,

as before, has the same buckling solution for both sets of boundary conditions, while for the

orthotropic laminate the buckling temperatures corresponding to the two edge conditions dif-

fer for ¢_0 °. Differences between the buckling temperatures of the orthotropic laminates with

the two different boundary conditions increase with the magnitude of =. These differences are

smaller for the rectangular plates than for the square plates.

The out-of-plane buckling displacements for (a) quasi-isotropic, and (b) orthotropic square

laminates with = = 0 ° are given in Fig. 5. These displacements are equally valid for fixed or

sliding simple support conditions. Although it is not readily apparent, because the laminates

are not identical, the eigenvectors associated with each are slightly different. Thus their

buckling displacements are not quite the same. Note that the buckling displacements are

slightly asymmetric with respect to the square geometry of the plate. The displacements are

not symmetric with respect to the lines x = a/2 or y = b/2. This asymmetry to the deforma-

tion is due to the Dla and D_ bending stiffness terms. If these terms are artificially set to zero,

the buckling temperature is given by the 1-term solution and the asymmetry of the deformation

disappears, as shown in Fig. 6. For = = 30 ° this asymmetry is somewhat more pronounced,

owing to the dependence of the bending stiffnesses on the angle =. The influence of = on the

asymmetry of the buckling displacements is quite evident when studying the (-t-45/0z)$ lami-

nate. A comparison of the buckling deformations at ,, = 0 ° and at = - 30 ° is given in Fig. 7 for

the (+ 45/0/90)s laminate, and in Fig. 8 for the (-I-45/0t)s laminate. The asymmetry is also

slightly more dramatic for the orthotropic laminate when = = 30° due to the presence of the

nonzero shear stress resultant N_ = - N_,.

Figure 7 is valid for either set of boundary conditions, while Fig. 8 applies only to the case

of fixed simple supports. The difference between the two sets of boundary conditions for the

orthotropic laminate with =_0 ° lies in prebuckling solutions. In comparing the deformations

associated with each simple support condition, it is seen that, overall, the influence of the

prebuckling solutions produces little difference in the solutions for the out-of-plane buckling

displacements. These out-of-plane buckling deformations are given in Fig. 9 for the
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X

(a)
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=-- X

(b)

Buckling displacements for (±45/0190) s plate with (e) l: 0". end (b) ,,= 30".
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Fig. 8. Buckling displacements for (+45/0,) s plate with (a) oz=0", and (b) ,,=30 °, and with fixed
simple supports.
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( _.+45/0_)s laminate with - = 30° for (a) fixed simple supports, and (b) sliding simple supports.

These appear to be very similar, but the asymmetry evident in both cases is slightly less for

the case of sliding simple supports.

In all cases note that neither half-plane nor quarter-plane symmetry exists for this type

of problem. For all skew angles, the buckled shapes of the square laminates consist of just

one half-wave in each direction. The same is true for the rectangular quasi-isotropic and

orthotropic plates with either simple support boundary condition.

Although the prebuckling solution does not have a large effect on the buckling temper-

ature or the buckled shape of a laminate, it is quite complicated itself. Contour plots are given

in Fig. 10 of the prebuckling stress resultants, Nx, Ny and N,_, for the ( +_.45/0z)s at = = 30° with

sliding simple supports. This is the only case studied with nontrivial prebuckling stress re-

sultants. In Fig. 10 each prebuckling stress resultant has been normalized by the value of that

prebuckling stress resultant for the same laminate with fixed simple supports. Since for the

case of fixed simple supports all prebuckling stresses are spatially uniform, there would be

no contours for that case, or, rather, there would be one contour encompassing the entire

planform and the value of that contour would be unity. As can be seen from Figs. 10a and 10b,

there is a large central region of the plate within which the prebuckling stress resultants Nx

and Ny are quite uniform and nearly equal to their values for the fixed simple support case.

In two opposite corners the values of N, and Ny increase beyond their fixed support values,

while in the two other opposite corners, the values of Nx and Ny decrease below their fixed

support values. The variation of N,v with spatial location is quite severe. The value of N_ on

the four edges for the case of sliding simple supports must be zero. On the other hand, in the

center of the plate the value should approach that of fixed simple supports. The density of

contours reflect this rapid change of conditions.
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Fig. 9.

(b)
_X

supports.BUcklingdisplacements for (±45102) s plate with = = 30* with (a) fixed, and (b) sliding simple
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Fig.10.

Y

Y

N X

=X

"-X

Ny

Normalized prebuckling stress resultant contours for (-f-45/0=) s plates with ==30 ° and
sliding simple supports.
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Figure 10 (continued)
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4.2.2 Linearly Varying Change in Temperature: AT = ¢ + dx

As mentioned previously, the problem of a linearly varying temperature change may be

approached operationally either by specifying c and solving for the value of d to cause

buckling, or by specifying d and solving for the smallest value of c necessary to cause

buckling. In obtaining the following numerical results, d has been specified and the value of

c is sought. The buckling of plates in the presence of a linearly varying change in temper-

ature, A_T= c + dx, will be studied for the range of gradients

da

-1.5_; _ -:1.5. (4.37)

The quantity da represents the difference in temperature between the two ends of the plate.

The quantity &T °, as has been observed, is the buckling temperature of both the quast-

Isotropic and orthotropic laminates when = = 0 ° and the plate is heated uniformly. It has been

a characteristic and important temperature for this study. Equation 4.37 states that the tem-

perature difference between the two ends of the plate will be up to 150% of this characteristic

temperature. The sign of the quantity da/AT* will essentially dictate which end of the plate is

warmer than the other.

4.2.2.1 Convergence Characteristics

Proceeding as with the case of a uniform change in temperature, the first issue to be

addressed is that of convergence. The convergence of this case for d =0 (the case of uniform

temperature change) has already been established in the previous section and this will be

used as a starting point to study the convergence of cases in which d#=O. The convergence

of both the prebuckling and the buckling problem must be considered. This will be ap-

proached in the same manner as in the case of a uniform change in temperature and sliding
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simplesupportsin the previous section. Using a large gradient, da/AT* = 1.5, a severe situ-

ation, the convergence of a ( + 45/0z)s rotated by a = 30 ° for the case of fixed simple supports

is considered first. Compared to the other laminates and other values of =, this situation re-

quires as many, or more, terms in both the prebuckling and the buckling solutions as the other

cases in order to reach convergence.

The effect that the number of terms taken in the prebuckling solution, I x J, has on the

buckling solution, as well as the effect of increasing the number of terms M x N taken in the

assumed solution for w_', is shown in Table 4. In Table 4 the buckling temperature, c, has

again been normalized by AT*. From this table, it is obvious that buckling temperature is in-

sensitive to the details of the prebuckling solution, there being a small difference between

I x J = 1 terms and I x J = 144 terms. The results of Table 4 indicate that solutions with

I x J = 100 and M x N = 64 are converged. Considering the computational costs, values of

I x J < 100 and M x N < 64 can be used with a high degree of accuracy. The numerical results

of Table 4 are again based on a 6 in. by 6 in. laminate.

The convergence of the buckling and prebuckling problems are considered for a

(_+. 45/02)s with = = 30 ° for the case of sliding slmple supports in the same manner. In this

case, however, Ix J = 81 is used as the starting point for studying the influence of

prebuckling. This is the number of terms which were required in the prebuckling solution in

order to reach convergence of the buckling solution in the case of uniform temperature

change and sliding simple supports. The results of this convergence study are given in Table

5. Although an even larger number of terms, I x J = 256, must be taken in the prebuckling

solution to reach convergence of the buckling solution, the buckling temperature, c, is again

seen to be fairly insensitive to the prebuckling solution. The results in Table 5 indicate that

all solutions with I x J = 256 and M x N = 100 are converged. Series with less than these

terms provide reasonably accurate answers, however.

Buckling Response 59



Table4. PREBUCKLING CONVERGENCE STUDY FOR TEMPERATURE GRADIENT CASE: (+_.4510=)=
PLATE, SQUARE, ,,,=30% FIXED SIMPLE SUPPORTS, dalAT °= 1.5.

IxJ

1

4

9

16

25

36

49

64

81

100

121

144

IxJ

1

4

9

16

25

36

49

64

81

100

12I

144

MxN = 36 MxN = 49

C(I)

W11

&T"

-0.186 1,000

-0.190 1,000

-0.187 1.000

-0.190 1.000

-0.205 1.000

-0.197 1.000

-0.200 1.000

-0.199 1.000

-0.200 1,000

-0.199 1.000

-0,200 1.000

-0,200 1.000

W21

-02309

-0.2338

-0.2315

-0.2333

-0.2402

-02368

-0.2382

-0.2375

-0.2384

-0.2321

-0.2388

-0.2383

IxJ

1

4

g

16

25

36

49

64

81

IO0

121

144

C(1)

&T"

-0.176

-0.190

-0.187

-0.190

-0,207

-0.197

-0.203

-0.199

-0.198

-0.202

-0.202

-0.202

W11

1.000

1.000

1,000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

MxN = 64 MxN = 81

IxJWZl

C (1)

Wll

AT"

-0.184 1 000

-0.192 1.000

-0.189 1.000

-0.192 1.000

-0.206 1.000

-0.199 1.000

-0.205 1.000

-0.200 1.000

-0.199 1.000

-0.203 1.000

-0.203 1.000

-0.203 1.000

1

4

9

16

25

36

49

64

8t

100

121

144

C (_)

&T"

-0.189

-0.192

-0.189

-0.192

-0.216

-0.199

-0.202

-0.200

-0.202

-0.203

-0.203

-0.203

-0.2310

-0.2339

-0,2316

-0.2334

-0.2403

-0.2370

-0.2383

-0.2375

-0.2385

-0.2380

-0.2389

-0.2384

(1) Numerical results computed based on a 6 in. by 6 in.

Wll

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1,000

1.000

1.000

1.000

1.000

plate.

W21

-0.2309

-0.2339

-0.2315

-0.2333

-0.2402

-0.2378

-0.2382

-0.2374

-0.2386

-0.2306

-0.2388

-0.2383

W21

-0.2310

-0.2339

-0.2316

-0.2334

-0.2403

-0.2370

-0.2384

-0.2375

-0.2385

-0.2380

-0.2389

-0.2384
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Table 5.

IxJ

81

100

121

144

169

196

225

256

289

IxJ

81

100

121

144

169

196

225

256

289

PREBUCKLING CONVERGENCE STUDY FOR TEMPERATURE GRADIENT CASE: (+45/0,)s
PLATE, SQUARE, == 30=, SLIDING SIMPLE SUPPORTS, dal&T °= 1.5.

MxN = 64

C(1)

AT" w_l

-0.268 1.000

-0.271 1.000

-0.272 1O00

-0.273 1.000

-0.277 1.000

-0.278 1.000

-0.280 1.000

-0.281 1.000

-0.281 1.000

MxN = 100

C(1)

AT" w.

-0.277 1.000

-0.281 1.000

-0.285 1.000

-0.287 1.000

-O.287 1.000

-0288 1.000

-0.290 1.000

-0.291 1.000

-0.291 1.000

W21

-0.1839

-0.2338

-0.1861

-0.1871

-0.1877

-0.1884

-0.1888

-0.1889

-0.1891

W21

-0.1840

-0.1855

-0.1862

-0.1872

-0.1878

-0.1883

-0.1889

-0.1894

-0.1898

IxJ

81

100

121

144

169

198

225

256

289

IxJ

81

100

121

144

169

196

225

256

289

MxN = 81

C(_)

AT" w,1

-0.271 1.000

-0.274 1.000

-0.277 1.000

-0.278 1.000

-0.280 1.000

-0.281 1.000

-0.282 1.000

-0.284 1.000

-0.284 1.000

MxN = 121

C (1)

AT"

-0.280 1.000

-0.284 t .000

-0.285 1.000

-0.285 1.000

-0.287 1.000

-0.288 1.000

-0.290 1.000

-0.291 1.000

-0.291 1.000

W21

-0.1841

-0.1856

-0.1862

-0.1873

-0.1878

-0.1885

-0.1889

-0.1895

-0.1897

W11 W21

-0.1840

-0.1855

-0.1872

-0.1878

-0.1878

-0.1885

-0.1889

-0.1895

-0.1898

(1) Numerical results computed based on using a 6 in. by 6 in. plate.
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4.2.2.2 Buckling Characteristics

One convenient way to represent the results for the case of a linearly varying temper-

ature gradient is shown in Fig. 11. In this figure the functional relationship between c and d

is illustrated for square quasi-isotropic and orthotropic laminates with = = 0 ° and with both

fixed and sliding simple supports. In this figure c is normalized by AT', and d is normalized,

as explained above, using the length of the plate, a, and AT*. The form of this graph is largely

due to the choice of placing the origin of the coordinate system at the corner of the plate. One

of the observations that can be made from this figure is that rotating the problem by 180 °

makes no difference to the overall buckling solution. For instance, for the (-t- 45/0/90)s plate

with ¢ =0 ° and fixed simple supports, when da/AT* = 1.5, in order for the plate to buckle, at

one end of the plate c/&T* = 0.09 while at the other end of the plate (c + da)/&T" = 1.59. When

da/&T* = -1.5 for the same case, the buckling solution is that c/AT" = 1.59, so that, again, in

order for the plate to buckle, we must have at one end (c + da)/AT* = 0.09 while at the other

end c/AT* = 1.59. In other words, it does not matter which end of the plate is heated relative

to the other. The case of d =0 corresponds to the uniform temperature case and the values

of c for this situation reiterate data shown in the previous section. As noted in the previous

section, for a uniform change in temperature the buckling temperature for the quasi-isotropic

and orthotropic laminates, with fixed and with sliding simple supports, is the same when

=0 °. In the presence of a change In temperature which varies linearly with x, d=_O, the

buckling temperatures for these cases are no longer the same, but are very close to one an-

other, as is evident from the figure. In particular, the buckling solution for the quast-lsotroplc

laminate with fixed simple supports Is not identical to the solution for the quasi-isotropic

laminate with sliding simple support conditions, when d#=0. The same is true for the

orthotropic laminate. This is because the prebuckling solution for either laminate with fixed

simple supports is not identical to the prebuckling solution for the same laminate with sliding

simple supports. The differences among solutions, though minimal, do change with =.
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2,0

1.5 ....

1.0

0,5

0.0

-0.5
-_.5o -_.oo -o.5o o.oo 0.50 _.oo _.5o

da/ _T"

[+45/-45/0/0]s [+45/-45/0/0]s [+45/-45/0/90]s [+45/-45/0/90]s IF.ix;_.s:.s:s,!,J',_.o.gs..s.F_xo_s.s. s,_o9s.s.

Fig. 11. The Influence of a thermal gradient on buckling temperature, &T=c+dx, square platee,
_:0 °.
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The effect that skewing the material axes of these laminates by = =30 ° has on the

buckling temperatures for the case of a linearly varying change in temperature is shown in

Fig. 12. For comparison, the case of = = 0 °, just discussed, is included on the figure. The

buckling temperatures, c, for the ( ___45/0/90)s and ( _+_45/0z)s laminates with = = 30 ° and either

set of boundary conditions also have values which are very close to one another for a given

value of d. In the case of a uniform change in temperature, the buckling temperatures for both

laminates under either boundary condition decrease when the material axes where skewed.

As can be seen from this figure, the same is true for the case of a linearly varying temperature

gradient. Several other observations can be made. First, for d<0, the situation where the

right end of the plate is Cooler than the left end, c is always positive. This is interpreted to

mean the when the right end of the plate is cooler than the left end, the left end of the plate

must always be heated in order for the plate to buckle. Second, for the quasi-isotropic and

orthotropic laminates with no skewing, this is actually the case for any d in the range illus-

trated. However, for the laminates with skewing and with d positive and near the high end

of the range shown, meaning the gradient is such that the right end of the plate is warmer than

the left end, the left end must actually be cooled to buckle the plate, i.e., c<0.

The buckling temperatures of the orthotropic plate with no skewing and rectangular

planform, a/b=2, are compared with those for the square orthotropic plate (a/b=1) with

= = 0 _ in Fig_ 13. As was the case for a uniform change in temperature, the rectangular plates

have a lower buckling temperature, c, than the square plates. Differences between the

buckling temperatures of the laminates with the two different boundary conditions are small

for both the square and and rectangular plates. Unlike the square plates without skewing,

however, for d positive and near the middle to high end of the range studied, the plate must

be cooled on the left end to buckle, i. e., c<0. Although not shown, the results for the quasi-

isotropic laminate are similar.

The effect of skewing the material axes by = = 30 ° on the rectangular orthotropic plate is

shown in Fig. 14. It was seen In Fig. 12 that for square plates the cases of = =0 ° and

= = 30 ° fall into two distinct groups. In contrast to the results for square plates, for rectangular
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1.5

* 1.0 Y

0.5 _"_-_.

0.0

-0.5
-1.50 -1.00 -0.50 0.00 0.50 1.00 1.50

da/AT"

[.45/-45/0/0]s [+4S/-4S/0/0]s [.45/-45/o/gO]s [+4S/-45/o/gO]s !
Fixed S.S. Sliding S.S. Fixed S.S. Sliding S.S.

Fig. 12. The Influence of • thermal gradient and skew angle on buckling temperature,
_T=c+dx, square plates.
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2.0

1.5

0.0

-0.5

orthotropic: [+45/-45/0/0]s

Y T a/b=2

Y

a/b=1 '_ =
X

x

, I . I , , I

._.so -_.oo -o.so o.oo o.so _.oo _.so

da/_,T"

] [+4s/-4s/o/ols[_4s/-45/O/OlsI

_,_as,s. S[_jntS_S[

Fig. 13. The influence of • thermal gradient and plate geometry on buckling temperature,
&T=c+dx, (:L'45/0,)=, ==0 °,
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plates,theresultsfor the (± 45/0z)s laminate with = = 0° and = = 30° and with either set of

boundary conditions, are very similar. Again, although not shown, the results for rectangular

quasi-isotropic laminates are similar.

Figure 15 shows the out-of-plane deflection contours for the orthotropic laminate with

= 0 ° and fixed simple supports for (a) da/AT" = 0, and (b) da/AT* = 1.5. As can be seen, the

temperature gradient causes the maximum deflection to move toward the warm end of the

plate, x=a. As was s.een previously, in Fig. 5b, for the (-{-45/0z)s laminate, with = = 0° and

no temperature gradient there was an asymmetry to the out-of-plane deflection due to Dis and

Dzs. These bending coefficients also cause an asymmetry for the nonuniform temperature

case. When D16 and Dzs are artificially set to zero for the case of a nonzero gradient, the de-

flection is symmetric about the line y=b/2. This is illustrated in Fig. 16 where the buckling

displacements of the (±45/0z)s laminate with = = 0 ° and Dis and Dzs set to zero is compared

with the case where D_6 and Dzs are not zero.

In Fig. 17 the buckling displacements for the orthotropic laminate with fixed simple sup-

ports and {a) _( -- 0 °, and (b) c(= 30 °, and a linear temperature gradient of da/AT* = 1.5 are

compared. For the uniform temperature case the asymmetry of the buckled configuration was

more pronounced in the ( + 45/0z)s plate with = = 30 ° than with = = 0 °. This was seen in Fig.

8. As can be seen from Fig. 17, this greater asymmetry is also more exaggerated in the

presence of a thermal gradient. Thus it can be concluded that the presence of a temperature

gradient exaggerates the asymmetry caused by D_s and D_. For the case of the (+ 45/0=)s

plate with _ = 30 °, however, part of this asymmetry is also due to the presence of a nonzero

N;, as was discussed for the uniform temperature case (Fig. 8).

A comparison of the buckling displacements of the ( ± 45/0z)s plate when = = 30° (a) with

fixed simple supports, and (b) with sliding simple supports, is given in Fig. 18 for

da/_T'= 1.5. For the case of a uniform temperature change these deflections were very

similar, although the asymmetry was slightly more for the case of sliding simple supports.

As can be seen from this figure, for the case of a gradient in temperature, the asymmetry is

much more pronounced for the case of sliding simple supports.
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1.5

0.0

-0.5 [
-1.50

orthotropic: [+45/-45/0/0]s

aJb = 2

x

, I , I
-1.00 -0.50

-1.0 = , I = I ,
0.00 0.50 1.00 1.50

da/AT"

==30 0 a=30 0 = =0 ° = =0 ° J
i

Fixed S.S. Sliding S.S. Fixed S.S. Sl_lng S.S. Io..=.=ww.° i _ _ . mu_

Fig. 14. The Influence of thermal gradient, support conditions, and skew angle on buckling tem-
perature, AT = c+ dx, (-t-4510_)e plate =.
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(a)

Y

(b)

_X

Fig.

_X

15. Buckling displacements for (-I-45/0,) s plates with ==0* and fixed simple supports (a) no
gradient, and (b) da],._T*= 1.5.
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(a)

Y

(b)

----X

_X

Fig. 16. Buckling displacements for (a) (__.4510z)s plate, and (b) (-F4510,) s plate with D16=D26=0,
,,= 0", fixed simple supports, daJ_T* = 1.5.
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Fig.17.

(a)

Y

(b)

_X

=-X

Buckling displacements for (+45/02)s plate with (a) o_=0 ° and (b) ==30", fixed simplesupports, da/&T" = 1.5.
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y _ .__ o. 2 --.c.

(a)

Y

X

(b)

X

Fig. 18. Buckling displacements for (__.45102)s plates with ==30°and (a) fixed simple supports, and
(b) sliding simple supports, daJAT*= 1,5.
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Although the prebuckling solutions do not have a large effect on the buckling temper-

atures of these laminates for the case of a thermal gradient, the prebuckling solutions are

themselves quite complicated. Contour plots are given of the prebuckling stress resultants,

N,, Ny and Nw, for the (+ 45/0=)s plate for = = 30° when da/AT" = 1.5 in Fig. 19 for the case

of fixed simple supports and in Fig. 20 for the case of sliding simple supports. In both figures,

each prebuckling stress resultant has been normalized by the value of that prebuckling stress

resultant for the same laminate with fixed simple supports and no temperature gradient. For

the case of fixed simple supports, Fig. 19, the values of N= and Ny increase from the cooler to

the warmer edge of the plate, while the variation of N_ with spatial location is quite severe.

Specifically, the point x/a=0, y/b=0.5 has Nx=0. The locus of points for Nx forms an 'S'-

shaped contour from that point. The normalized value of N, exceeds 3 on the opposite,

warmer, edge. The normalized value of Ny is close to unity on the line x/a=0.5 and the zero

contour is to the left of that. It reaches about 1.8 on the warmer edge. The locus for N_ = 0

covers a large area of the plate, the normalized value of N, covering the approximate range

-1-5. For the case of sliding simple supports, Fig. 20, the value of Ny increases rather uniformly

from the cooler to the warmer edge of the plate. The resultant N w varies rapidly on the left,

cooler edge, varies less rapidly and quite uniformly on the central 80% of the plate, then

varies rapidly again on the right, warmer edge. For N_ there are what might be termed

boundary layers at the left and right edges. The resultant Nx exhibits rapid changes in the

corners, particularly near the corner x/a ---1, y/b = 1.

This concludes the investigation of thermal buckling and prebuckling in this study. These

linear analyses have provided insight into-the influence of boundary conditions, material axis

skewing, degree of orthotropy, and aspect ratio on thermal buckling for both a uniform change

in temperature and a change in temperature which varies linearly across the plate. The

nonlinear problem of determining the plate response as the temperature increases beyond the

buckling temperature, thermal postbuckling, is discussed in the next chapter.
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Fig. 19.

Y

N X

=x

Y

• \G I

b- X

Ny

Normalized prebuckling stress resultant contours for (+45/0,) s plate with ,,= 30 ° and fixed
simple supports, da/,_T* = 1.5.
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Figure 19 (continued)
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Fig.20.

Y

I

= X

N X

Y

'-X

Ny

Normalized prebuckling stress resultant contours for (-t-45102)s plate with ==30 ° and
sliding simple supports, da/AT' = 1.5.
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Figure 20 (continued)
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5.0 Postbuckling Response

Plates are usually able to resist increasing loads subsequent to the onset of buckling [21]o

The ability to resist loads beyond the buckling load is an asset in that the buckling load is not

as critical, and it is possible to utilize the postbuckling load capacity to improve structural ef-

ficiency. Because plates may also be able to resist deflections at temperatures beyond the

critical buckling temperature, thermal postbuckling is investigated. In this chapter the thermal

postbuckling problem is formulated, a solution scheme presented, and numerical results dis-

cussed.

5.1 Formulation

As in the buckling problem, in the postbuckling problem, as it is studied here, the so-

called preloading effects, _, _ and T_v, in eqn. 3.10 are assumed to be due only to

thermally-induced deformations, and the temperature distribution Is assumed to be spatially

uniform. As a result, eqns. 4.1 - 4.3 apply. However, although the plates are still assumed to

be initially fiat, the effects of moderate rotations can no longer be neglected in the expressions
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for the reference surface strains. Thus, from eqns. 3.5 and 3.6, the reference surface strains

are given by

o _u ° 1 / _w° _2 o av ° 1 (aw° _ 2=x= _---Z+Y _x ) ; _y="_-y +Y\ _y )
o _u ° _v ° (_w° c_w°

_xy=-_-y +-_-x + ax

(5.1)

The equations governing the postbuckling are obtained by setting the first variation of the total

potential energy equal to zero. Using eqn. 5.1, the first variation of the total potential energy,

eqn. 3.29, using the notation of eqn. 3.17, is given by

 wo  wo/_= Nx _+ _x _x +Ny _+ o_y o_y

(a6u° a_v° aw° a_w° _° a_w° /+axy "_Y +'-_'+ o_y cnx + Ox cny

-M x 028w° My a26w° 2Mxy _6w° "_dxdy,
O2X 02y Ox_y J

(5.2)

where the stress resultants, expressed in terms of the reference surface displacements, are,

from eqn. 3.13,
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t uo o 2)
A |-'E_,-'EC-_/"au° av° aw° aw° 1 -Nx T+

l°k, ,..,, + ,.,,.. + 0y ax
.i

( ( IaU° 1 aV° 1

N_=A,_ --_-+_- +A_ --_T-+T ay /)

(ou° ov° ow°ow°) T+A26 -_y +_+ ay c_x -Ny

N_y= A.,o_ + T \ 0x / / + A_o_ +

(a.° ov° ow° _,° / ,+A06 -'_y +-_x + _y _X /-Nxy

c32wo c_2wo _2wO
= - 2D16

Mx Dll (_2x D12 c_2y _xay

c_2wo a2w o a2w o
-- 2D26

My= D12 c_2x D22 _2y ax_y

_2wO _2wO _2wO
2D6s

Mxy =-D16 a2x D26 _2y (3xay

(5.3)

In the above expressions, the thermal stress resultants are

NT_ _TAT

T N_ATNy=

=
(5.4)

where the barred quantities were defined in Ch. 4 as the thermal stress resultants due to a

unit temperature change. Substitution of the expressions of eqn. 5.3 into eqn. 5.2 leads to a

rather complex equation for the first variation of the total potential energy. Closed-form sol-

utions are difficult to obtain. As an alternative, using the Rayleigh-Ritz method, substitution

into eqn. 5.2 of the assumed forms for the displacements u°, v° and w° results in a coupled set

of nonlinear algebraic equations. These coupled equations can be solved numerically for the
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coefficientsoftheassumeddisplacementfunctionsinordertoobtaintheresponseoftheplate

asa function of temperature. Here the assumed forms for u°, v°, and w° for the case of fixed

simple supports are given by

1 J

U°(X' Y)= _ _ uljsin(Tin'x )sin(-_ )
I=1j=1

I J

• /t'X .

vO(x,Y) = _ _,V,jS n(X)sln('_'_--)
i=Ij=I

M N

wO(x' Y) = _ _ WmnSin(T mlrx,. / nlry_)slnt _ )"
m=ln=l

(5.5)

The assumed forms for the case of sliding simple supports are given by

I J

,)=EZ
I=lJ=0

I J

V°(X' Y)= _ _,, VijCOS( xi_x )sin(_ )
I=0j=.l

M N

• m_rx . n=y
w°(x,Y' = _ _WmnSln(T)sln(--_-)-

rn--1n--1

(5.6)

The form for w°(x, y) follows from the form used for studying the buckling response. The forms

for u°(x, y) and v_(x, y) follow from the forms used for the prebuckling computations. Despite

this similarity between the prebuckling and postbuckling problems, the postbuckling problem

is computationally more involved. Substitution of either eqn. 5.5 or 5.6 into eqn. 5.3 and eqn.

5.2 leads to the nonlinear coupled equations for uu , v_l, and w=I.

Due to the complexity of this problem, the specific issues discussed here will be more

limited than for the buckling problem. Specifically, only square plates undergoing a uniform

change in temperature will be considered. However, the influence of both sets of boundary

conditions, material axis skewing, and quasi-isotropic and orthotropic stacking arrangements

on the thermal postbuckling response will be discussed.
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5.2 Numerical Results

The nonlinear, coupled equations for the postbuckling response of a laminate are solved

using a nonlinear equation solver (IMSL subroutine N2QNF [20]). A continuously increasing

change in temperature from an ambient temperature is represented by a sequence of incre-

mental temperature changes. At each increment in temperature a new solution must be found

such that each nonlinear equation is equal to zero. This is equivalent to solving for

6_r(u°, v°, w°) = 0, At each step the search for a new solution is begun by taking as an initial

guess the solution calculated for the preceding temperature step. Because derivatives of u°

and v° are added to squares of derivatives of w°, in order to allow a full amount of coupling,

more terms need to be taken in the series for uo and v= than in the series for wo. To determine

the relation between the number of terms taken in u° and v_ and the number of terms taken

in w° the following trigonometric relations are considered:

sin28 = _- (1 -- cos28)

cos28 = -_- (1 + cos28)

sinScose = -_- sin2e.

(5.7)

In light of these relations and the expressions in eqns. 5.5 and 5.6, in order to allow the highest

harmonic in u° and v° to match the highest harmonic in w°=, we must have I = 2M and J =

2N, where I and J are the upper limits in the series for u° and v°, and M and N are the upper

limits in the series representing w°.

5.2.1 Convergence
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To study the convergence of these series solutions to the postbuckling problem, the re-

sponse of a (_+.45/0z)s laminate with _ = 30° is calculated using different numbers of terms in

the series expressions for u°,v ° and w °. As with the buckling response, this particular situ-

ation requires as many, or more, terms in the postbuckling solution, compared to the other

cases, in order to reach convergence. In the figures to follow, the relationship between the

deflections at the center of the plate, normalized by the plate thickness, and AT/AT ° are il-

lustrated. Recall from Ch. 4 that AT* is defined to be the buckling temperature of a quasi-

isotropic plate with fixed simple supports, cL= 0 °, and a uniform temperature distribution. The

numerical value of AT ° is 69.4=F. In Fig. 2i the convergence characteristics for the fixed

simple support case are illustrated. The temperature-deflection relationship as a function of

the number of terms in the series are shown. Note that the plate remains flat until the buckling

temperature for this particular plate configuration is reached, /kT/AT" = 0.71. From this figure

it can be concluded that the use ofMxN = 91eadstoa converged solution. In fact, the use

of MxN = 1 provides an excellent estimate of the postbuckling response. The results of

Fig. 21 show that at temperatures five times the buckling temperature, plate deflections less

than twice the thickness of the plate occur. In Fig. 22 the convergence characteristics for the

case of sliding simple supports are illustrated. Convergence for this case is not quite as rapid

as for the case of fixed simple supports. The cases ofMxN = landMxN = 4 are not good

estimates of the response as they were for the fixed boundaries. However, MxN = 9 ap-

pears to lead to a converged solution. It is important to note thal compared to the fixed simple

support case, the postbuckling deflections for this case are not as large. The results in these

figures are again based on a 6 in. by 6 in. laminate.

With convergence issues addressed, the next section focuses on some of the

postbuckling responses for various physical situations. For these cases MxN -- 9 will be

used.
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Fig. 21. Postbuckling convergence study: (-I-4510=) s plate with ==30 ° end fixed simple supports.
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Fig. 22. Postbuckling convergence Itudy: (::L-45102)splate with s=30" end sliding simple supports.
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5.2.2 Postbuckling Characteristics

The postbuckling deflections at the center of the plate, normalized by plate thickness,

versus &T/_T* for the quasi-isotropic laminate with = = 0 ° and fixed simple supports are il-

lustrated in Fig. 23. As would be expected, the laminate begins to deflect out-of-plane at the

critical buckling temperature predicted by the buckling solution, &T/&T* = 1. Beyond this point

the deflection increases rapidly until nearly twice the buckling temperature, AT*, and then in-

creases more slowly with increasing temperature. Although the slope of the temperature-

deflection relation appears to be somewhat steep, even at five times the buckling temperature

the deflection of the laminate is less than two plate thicknesses! It should be noted that the

negative of these deflections is a possible postbuckling solution, as is the case w ° = O.

Though stability of the postbuckling configurations was not addressed in this study, the case

of w ° = 0 is not believed to be stable.

The normalized postbuckling deflection at the center of the plate for the quasi-isotroplc

laminate with a = 30 = and fixed simple supports is shown in Fig, 24. A comparison with the

previous case, shown by a dotted line, shows that the postbuckling responses of the quasi-

isotropic laminate with = = 0° and the quasi-isotropic laminate with a = 30 ° are distinct. The

buckling temperature for the (± 45/0/90)s laminate with = = 30° is lower than the buckling

temperature for the ( -t- 45/0/90)s laminate with a = 0 °, so the postbuckling deflections of these

laminates begin at different normalized temperatures. However, even if the postbuckling re-

sponse for the _ = 30 ° case were shifted to the right so that its starting point coincided with

that for the = =0 ° case, the two responses would still not coincide. With _ =30 ° , the

postbuckling deflections are greater than with = = 0 °. This serves again as a reminder that

the term 'quasi-isotropic' refers only to the inplane properties of the laminate, the laminate

acting softer when _ = 0 °.

The postbuckling response of the orthotropic laminate with = --0 ° and fixed simple sup-

ports is shown in Fig. 25. Again the quasi-isotropic case is shown for comparison. Although
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Fig. 23. Postbuckling response of a (i-4510190)= plate with ==0 ° and fixed simple supports.
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Postbuckling response of a (-I-4510/90)s plate with ,,= 30" and fixed simple supports.
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Fig. 25. Postbuckling responN of s (:L'-4510=)=plate with ==0" end fixed simple supports.
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thebuckling temperatures for the orthotropic and quasi-isotropic laminates with = = 0 ° are the

same, the postbuckling responses of these two laminates are different. The normalized

deflection-temperature relations for both laminates begin at the same point and follow similar

paths until nearly twice AT °, after which the deflection for the ( _.+45/02)s laminate with = = 0°

increases less rapidly, reaching less than 1.5 plate thicknesses at/tT/,_T" = 5.

As was seen in ch. 3, Table 3, the buckling temperatures of the (± 45/0=)s laminate with

= = 30° and the ( + 45/0/g0)s laminate with = = 30 °, both with fixed simple supports, are within

a few degrees of each other. The postbuckling responses of these laminates are also very

similar, as shown In Fig. 26. Indeed, referring to Fig. 24, it is observed that the postbuckling

responses of the ( _.+45/0z)s and the ( ± 45/0/90)s laminates with = = 30° are much more similar

than are the responses of the same laminates with = =0 °. Skewing tends to be an equalizer

as regards the postbuckling responses of these two laminates.

The postbuckling response of the quasi-isotropic laminate with = = 0° and sliding simple

supports is shown in Fig. 27. The case of fixed simple supports from Fig. 23 is included for

comparison. The buckling solutions for the on-axis quasi-isotropic laminate with fixed simple

supports and with sliding simple supports are identical, and thus both postbuckling responses

remain flat until the normalized temperature is unity. However, while the postbuckling re-

sponses for these two cases are initially close to one another, they soon diverge. The out-

of-plane deflection at the center of the plate for the quasi-isotropic laminate with sliding simple

supports at AT/AT" = 5 is about 20% less than the deflection of the quasi-isotropic laminate

with fixed simple supports. Comparison of this figure with Fig. 24 shows that a change in

boundary conditions can have as much influence on the postbuckling response of a laminate

as skewing of the laminate's material axes.

In Fig. 28 the postbuckling response of the quasi-isotropic laminate with = = 30 ° and

sliding simple supports is shown. The case of = =0 ° is shown for comparison. Once again,

it is seen that the response of the quasi-isotropic laminate with = = 30° is distinct from the

response of the quasi-isotropic laminate with = = 0 °. This was the case for fixed simple sup-
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Fig. 27. Postbucklingresponseof s (i-4S!0190)s plate with _=0 ° and sliding simple supports.
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Fig. 28. Postbuckling respone of a (4-4510190)s plate with ==30* and sliding simple supports.
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ports,Fig.24.Thatdeflectionsfor the fixed support case are greater is evident by comparison

of Fig. 28 with Fig. 24.

Figure 29 shows the postbuckling response for the (___45/Gz)s laminate with = = 0 ° and

sliding simple supports. The postbuckling response for this case is quite different from those

seen previously. While the response for this case is initially almost identical to that for the

same laminate with fixed simple supports, for changes in temperature beyond LIT/AT" = 3 the

out-of-plane deflection at the center of the plate actually decreases with increasing temper-

ature! In all of the previous cases examined, the postbuckling response consists mainly of the

deflections associated with the Rayleigh-Ritz coefficient w11. In the present case, for

AT/AT*>1.5 the deflection associated with w13, and, to a lesser extent, the deflection associ-

ated with w=l, begin to influence the postbuckling response more and more as w13 and w_

rapidly approach the magnitude of w,_. The change in the character of the response with in-

creasing AT can be interpreted as modal interaction, the modes being the buckling modes

associated with the higher eigentemperatures in the buckling problem. This interaction can

be better understood by examining contour plots of the deflection, w, normalized by the plate

thickness, H, at _,T/_,T* = 2, 3, 4, and 5. These contour plots are given in Fig. 30. At

L_T/AT" = 2 the postbuckling deflection is similar to the buckling deflection for this case given

in Fig. 5b. The location of the maximum deflection is the center of the plate. As the temper-

ature increases, at AT/&T* = 3 and AT/AT* = 4, the contours become more oval shaped, with

the regions of maximum deflections moving toward the edges y=0 and y=b. At AT/AT* = 5,

this process has continued to the point that the maximum deflections no longer occur at the

center of the plate. This shift in the point of maximum deflection is largely due to the fact the

four 0° layers make the laminate much stiffer in the x direction than in the y direction, and the

fact that _r is less than one half of N_. This latter relationship is due to the negative value of

the thermal expansion coefficient _. A similar but less pronounced trend can be seen for the

( -I- 45/0z)s laminate with fixed simple supports and = = 0°, The postbuckling response for this

case was shown in Fig. 25. The deflection contours at various temperatures are shown in
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Fig. 31. It is evident that the points of maximum deflection move away from the center as the

temperature increases for this case as well.

As shown in Fig. 32 when the material a×es of the ( 4- 45/O2)s with sliding simple supports

are skewed by c, --- 30 ° the postbuckling response once again is such that the deflection as-

sociated with wl_ dominates with increasing temperature.

In conclusion, it can be stated that the thermal postbuckling response can be complex.

The dramatic change of the deflection pattern with increasJng tempera!.ure for certain physical

conditions attests to this fact. Also it is clear that the support conditions have an influence

on the thermal postbuckling response, as do the skewing angle and degree of orthotropy.

While an understanding of the postbuckling response is importanl, as mentioned in ch. 1, it

represents an ideal situation. Generally, imperfections in the plale, support conditions, and

even imperfections in the temperature field prevent observation of true postbuckling response.

Rather, postbuckling response is taken as the limit of behavior, imperfections causing the

deflection-temperature relations to deviate from those just discussed. The next chapter ad-

dresses the influence of imperfections and compares the response in the presence of

imperfections with the ideal postbuckling case.
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Fig. 32. Postbuckling response of a (::_'-45102)splate with ::30 + and sliding simple supports.
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6.0 Response in the Presence of an Imperfection

In this chapter the influence of two forms of imperfections on the thermally-induced re-

sponse of the plates are considered. One imperfection considered is a slight through-the-

thickness temperature gradient. The other imperfection considered is a lack of initial plate

flatness. Both of the imperfections represent very realistic deviations from the ideal. While

they do not include all the forms of imperfections that might be encountered, a study of their

influence provides insight into possible explanations of differences between observed and

ideal behavior in actual experiments. Numerical results are presented for both cases.

6.1 Formulation

6.1.1 Temperature Gradient Through the Thickness of the Plate

In the testing of plates in a thermal enviroment, achieving a perfectly uniform temperature

within the entire volume of the test chamber may be difficult. In a previous chapter the influ-
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enceof a temperaturegradientin the planeof theplatewasexamined.Here,the influence

of a temperaturegradientthroughthethicknessoftheplateon thethermalresponsewill be

examined.Thisis a reasonabledeviationfromtheidealsinceif a plateis testedin a hori-

zontalpositionwithinthetest chamber,convectionandconductioneffectsmay result in the

top surface of the plate being a slightly different temperature than the bottom surface of the

plate. Accordingly, the imperfection considered here is a temperature gradient through the

thickness of the plate which is of the form

AT = c(1 + --_- Z/ . (6.1)

In the above equation, e represents the magnitude of the gradient and H is the total thickness

of the plate. Because the reference surface, z=O, is the midplane of the plate, c is the tem-

perature at the midplane of the plate. Referring to the coordinate system in Fig. 1, the tem-

perature at the top of the plate is then c(1 +e/2), and at the bottom of the plate the temperature

Is c(1-e/2). Thus, if e is positive the plate is warmer on the top than on the bottom. This will

cause the plate to begin to deflect out of plane as soon as the temperature is increased rela-

tive to the reference temperature.

For this form of an imperfection the preloading effects, a,", _, and _, are again due only

to thermally-induced deformations. As a result, eqn. 4.1 - 4.2 are valid. Equation 5.2 still

governs the nonlinear response. However, M_, M_, and M_ are no longer zero, thus the stress

resultants are given by

O -O T
N x --- Al1¢ ° + A12_y + A16Yxy - Nx

o o T
Ny - A12 ¢° + A22¢y + A26Yxy - Ny

o o T
Nxy -----A16¢ ° + A2@y + A667xy - Nxy

= O O T
M x DllK ° + DI2Ky "F D16Kxy -- M x

T
My = D12Kx° + D22x _ + D2sKx°y -- My

o o T
Mxy = D16 K° + D26Ky + DssKxy -- Mxy,

(6.2)

where,
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+H

NxT = C (Qll(Zx + Q12_{y + Q16_xy)dZ
_ H

2

+H

2

+H

T= f-}----Nxy c (Q16C{x + Q26=y + Q68_(xy)dz
-H

2

+H

MxT = ce r 2 t= - _16_xy)Z2dZJ-H !'_/t1(Zx 4" Q12C{y +

2

+H

T ce rT,= - _26:xy)Z2dZ
My = _ J-H I'_t12C{x + 022=y +

2

+H

MxTy= -H'cef-HT (Qls=+Q2s=y-- + _6s=xy)Z2dz.

(6.3)

Using the reference surface strains and curvatures from eqns. 3.5 - 3.7, the stress resultants

of eqn. 6.2 become
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Nx=All --_-X +-'_- _ +A12 -'_--y "1- 2 _ _ );

(au° av° _°_°) T"t-A16 "-'_-÷-'_'-x "t- (_y aX --Nx

Ny=AI= -_-_+T\ 0x )/+As2 --_--+y

(0u° 0v° 0w° 0w°) ,+A26 "-_-y +--_-x + _y _x -Ny

ouO (ow°h owO
Nxy=Alo-_-_÷T\ 0× ))+A_6 -E-y+T -EY

0v° 0w° 0w° ] T
+A66 -'_'-y +-"_-x + O_J _X / -Nxy

O2w°

2DIs Ox_y

_2wO 02wo

Mx=-Dll a2x D12 _2y

o_w° a2w°

My=-D_2 _x D22 o_y

a2w° _w °
Mxy =-DIB c_2x D26 _2y

_- iT

- O_2W° . T

U26 _ -- My

_ 2Dee c_w° T
ax_y M_.

(8.4)

Substitution of eqns. 6.3 and 6.4 into eqn. 5.2 results in an expression for the first variation of

the total potential energy for this case. Proceeding as in ch. 5, the Rayleigh-Ritz method is

used to obtain a coupled set of nonlinear algebraic equations which can be solved numerically

for the response of the plate, for a given value of e, as a function of the plate's midplane

temperature, c. The assumed series of eqns. 5.5 and 5.6 are used to determine the responses

for the two boundary conditions.

Response In the Presence of an Imperfection 105



6.1.2 Lack of Initial Flatness

Because of the lack of ideal alignment of the fiber directions in all of the layers, the lack

of uniform processing conditions, and even slight variations in the prepreg used to fabricate

the plates, a composite plate rarely is perfectly fiat. Generally the plate has an initial out-of-

plane deflection. Here the influence of the imperfection on the thermal response of the plate

will be studied. Such an imperfection will cause the thermal response to deviate from the

ideal postbuckling response. Because the Rayleigh-Ritz method will again be used to solve

this problem, the initial out-of-plane deflection is given by a double sine series similar to the

one used to represent w" in ch. 5, namely,

M N
i , m_x . n_ry

m=ln=l

(6.s)

This represents the deviation from initial flatness of the reference surface. The displacement,

wo, as before, is the total out-of-plane deflection, including w_.

For this case the preloading effects are now due to more than just thermally-induced

deformations. In this case the reference surface strains of eqn. 3.5, due to the preloading ef-

fects, are

/2 _2wl
P 1 _w °

_x='_- _ -Z_ax 2 +:xAT

P ) (_2Wl
I ( Ow i 2

a2w i
P (_Wt (_wl 2Z + =xyAT.

(6.6)

From eqn. 3.8, the preloading effects are given by
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p -- p -- p -- p
Ox = Q11_x + Q12_y + Q16Yxy

p - p - p - p
Oy ---- Q12¢x + Q22_y + Q26Yxy

p -- p
Q_6_+%6_u h - p= -t- Q66Y xy'Txy

(6.7)

The stress resultants are the same as in eqn. 3.13. Namely,

o o o P
N x - Al1_; x + A121:y + A16)'xy - Nx

o o P
Ny = A12_x ° + A22_:y + A26Yxy - Ny

o o o P
Nxy ---- AI@ x + A26_-y + A66Yxy - Nxy

o o o P
Mx= D11K x + 012Ky Jr- O16Kxy -- M x

o o o P
My = D12K x + D22Ky + O26Kxy -- My

o o o P
Mxy = DI6K x -t- D26Ky -F D66Kxy -- Mxy.

(6.8)

In the present situation the preloading stress resultants are given by a combination of effects

due to lack of initial flatness, and thermal effects. The preloading stress resultants are, from

eqn. 3.14,

+H 2

= __-H °xdZ =-'2 AlI _" +'E A12 (_y J + A16 _'X O'y + Nx
2

f +H ( )2 ( _/, )2 0_4/, _,

p T p 1 aw t 1 T

Ny= --H oydZ-----_'A12 _ +_A22 _ +A26 _xx _ +Ny

2

+H I 2 ,_2

Nx =f-r, 1. X0w low') ow'ow' ,
2

+H

T p _2wl O_2WI _2wJ T

M: =/-H__ Z°xdZ = - Ol' -_'-- D12"--_-_"-2DIs'_ -+Mx
2

+H

02W I C_W I 1_2Wi r

M;=f _za;dz=-D'27-D22--_-2D2''_--x-x_+MY__
2

+H

-'E" p
Mxy-- f-H Z'rxydZ c_2w I 02w I 02w I T

P __ = -- D16 _- D26 "_-2Des _ + Mxy.

2

(6.9)
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Forthiscasethechangein temperaturewillbeassumedto beuniform,bothwithx andy,and

alsowithz. Thethermalstressresultantsarethusonceagaingivenby

T --T
N x - NxAT

T --T
Ny - NyAT
T --T

Nxy = NxyAT

iT T T=My=Mxy= 0.

(s.10)

Using the reference surface strains and curvatures, the stress resultants of eqn. 6.8 become

Nx_

+

Ny ---

+

Nxy =

A11 "-'_'-+2- _ +A12 _'y-y+ 2 \ 8y } )

tou° aw°0w°) PAle -'_-y +'-'_'-x + ay Ox --Nx

A (' au° _v° Ow° _w° I P26\ Oy +_ + ay ax -Ny

A16 _"x +"2"\ Ox )J +A2s _--+ 2 \ Oy ,))

- /'_'_-_. -;'Z-..[ _u° °_v° c;_w° c_w° / -NxyP+A60\ oy + ox+ 0y /

_2W° (_2W° _2W° p

M x = - D11 _2x D12 82y 2D_e _- M x

a2wo _2w° a2w° p

My=-D12 82x D22 82y 2D26_-My

02wO 02w o 82W ° p
= __ __ 2De6 __ Mxy,

Mxy -D16 _2x D26 _2y _x_y

(6.11)

where the preloading stress resultants are those of eqn. 6.g. The governing equation for this

problem is again the expression for the first variation of the total potential energy, given tn

Responie In the Prennce of in Imperfection 108



eqn.5.2. However,substitutionof theexpressionsfor thestressresultants, eqn. 6.11, leads

to an even more complex set of equations than before.

6.1.3 Assumed Displacements

For both the response due to a through-the-thickness temperature gradient and the re-

sponse due a lack of initial flatness, the assumed displacement functions used are the same

as those employed in ch. 5. These are:

for fixed simple supports,

I J

uO(x, y)= _ _ uusin( i..__. )sin(-_- )
I=lJ=l

I J

i==I j==_

M N

wO(x, y)__. _ _WmnSin( mlrx \. [n,ry--W--_)_'n k ):
rnmln=1

(6.12)

and for sliding simple supports,

I J

uO(x, y) -- _ _ uusin( _i'x )cos(-_ )
i==lj=O

I J

i==0j== 1

M N

2 2 --r-).
m=ln-1

(6.13)

In addition, for the case of initial out-of-plane deflections, the series representation for w* is

given in eqn. 6.5.
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6.2 Numerical Results

The nonlinear, coupled equations for the imperfection analyses are solved in the same

manner as were the equations for determining postbuckling response in the previous chapter.

The continuously increasing change in temperature is represented by a sequence of incre-

mental temperatures, and, at each step, the search for a new solution is begun by taking the

values of the displacement coefficients calculated in the previous step as an initial guess.

Because derivatives of uo and vo are added to squares of derivatives of wo, as was the case

for the postbuckling response, the relation between the numbers of terms taken in the series

foru o, vo,andw ° is the same as for postbuckling: I = 2MandJ = 2N, whereland Jarethe

upper limits on the series representing u• and v_, and M and N are the upper limits on the

series representing w_.

Numerical results will be presented for two specific cases. For the case of a temperature

gradient through the thickness of the plate, results will be presented for e = 0.05. This value

of e means that the plate is 5% warmer on the top than on the bottom. The form of this tem-

perature gradient is

(6.12)

For the case of an initial deviation from flatness, the initial deflection is taken to be

(6.13)

This represents an initial deflection which has an amplitude equal to one tenth of the laminate

thickness and is composed of one half wave in x direction and in the y direction.

The results to follow consider only square plates, a 6 in. by 6 in. plate being used to

compute the numerical results.
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6.2.1 Convergence Characteristics

the convergence characteristics of the reponse of a square (± 45/0z)s laminate with

= = 30° and with 5% temperature gradient through the thickness of the plate are given in

Fig. 33 for the case of fixed simple supports, and in Fig. 34 for the case of sliding simple

supports. In these figures the relation between the deflections at the center of the plate,

normalized by plate thickness, and c/AT" are illustrated. Likewise, convergence studies for

the reponse to an initial out-of-plane deformation of a square (±45/0_)s laminate with

= = 30° are given in Fig. 35 for the case of fixed simple supports, and in Fig. 36 for the case

of sliding simple supports. In the figures relating to convergence in the presence of an initial

imperfection, the deflections at the center of the plate minus the initial deformation and nor-

malized by the plate thickness are plotted as a function of c/AT*. These results were calcu-

lated using different numbers of terms in the series expressions for u• , v= and w_. In all four

studies the case of the (± 45/0=)s laminate with = = 30 ° requires as many, or more, terms in

the imperfection response solution, compared to the other cases, in order to reach conver-

gence. These figures indicate that for both imperfections and with both sets of boundary

conditions, convergence is reached when M x N = 9.

Attention now turns to a discussion of the influence of laminate properties, skew angle,

and boundary conditions on the response.

6.2.2 Imperfection Response Characteristics

The deflection response of a square (-I-45/0/90)s laminate in the presence of each of the

two imperfections with = -- 0° and fixed simple supports is shown in Fig. 37. The deflection

at the center of the plate, minus any initial deflection and normalized by the laminate thick-

ness, H, is plotted as a function of c, the change in temperature at the midplane of the lami-
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Fig. 33. Convergence study: thermal gradient imperfection, (±45102)s plate with _,=30 ° and fixed
simple supports.
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Convergence study: thermal gradient Imperfection, (-J-45/O=)s plate with = = 30' and sliding
simple supports.
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Flg. 3S. Convergence study: Initial deformation, (+4510,) s plates with ::30" end fixed simple
supports.
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Fig. 36. Convergence study: Initial deformation, (:::L-4SlO:)e plates with ¢t=30 ° end sliding simple
supports.
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Fig. 37. Imperfection analyses: (_45/0/90)s plate with ,,=0" and fixed simple supports.
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nate, normalized by &T'I Note that for the case of initial out-of-plane deflection, c represents

AT, the temperature change at every point in the plate, not just the midplane. Also, in this

figure the ideal postbuckling response is indicated for comparison. Unlike the postbuckling

response of a laminate under ideal conditions, the out-of-plane deflection of a laminate with

an imperfection begins as soon as temperature is applied. The deflections increase slowly

at first, then more quickly in the neighborhood of the critical buckling temperature, in the case

of this plate, AT*. Furthermore, as the deflections increase, the response of a laminate in the

presence of an imperfection asymptotically approaches the postbuckling response. In the

case of a temperature gradient through the thickness of the plate, the imperfection response

becomes virtually indistinguishable from the postbuckling response for c/AT*> 1.25. The

imperfection response in the case of an initial deflection shows much greater deflections at

the outset, but then falls just below the postbuckling response of the laminate. The case of

the initial out-of-plane deflection must be viewed in context, however. As was noted, it is the

normalized increment in displacement, i. e., (w-w_)/H, that is being plotted. If w/H were

plotted, the postbuckling relation and the relation for the temperature gradient would remain

unchanged from the way they appear in the figure. The relation for the case of initial lack of

flatness would be shifted upward by 0.1 and beyond a certain temperature the postbuckling

response and the response due to an initial out-of-plane displacement would also be indis-

tinguishable. Thus the deflection-temperature relation for the case of an initial deformation

would approach the postbuckling response from above, just as the deflection-temperature

relation does for the case of a temperature gradient.

The results look very similar for all the other cases involving the quasi-isotropic laminate.

Attention will thus focus on the response of the orthotropic laminate for the remainder of this

chapter.

The responses of the (+ 45/Oz)s laminate in the presence of imperfections with _, = 0 ° and

fixed simple supports are shown in Fig. 38. As in the case of the quasi-isotropic laminate, the

deflections of the orthotropic laminate with either imperfection begin as soon as temperature

is increased and they approach the postbuckling response as the increase in temperature
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Fig. 38. Imperfection analyses: (i-4510=) s plate with == O" and fixed simple supports.
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continues. As the temperature is increased, the response for the case of the thermal gradient

in the z direction quickly coincides with the postbuckling response, while the laminate with

an initial deviation from flatness deflects much more at the outset, but then falls just below the

postbuckling response. Note also how flat the relationships are, compared to the same re-

lationships for the ( -t- 45/0/90)s plate, Fig. 37, when c/AT* exceeds four.

In Fig. 39 the responses of the ( + 45/0=)s in the presence of imperfections with = = 0° and

sliding simple supports are given. As seen previously, the postbuckling response for this case

begins primarily with the domination of the deflection associated with wl,, but changes when

c/AT* = 3. At temperatures greater than this, the deflection at the center of the plate actually

begins to decrease due to the influence of the deflections associated with the w, and ws,

terms. As in the previous cases, the response of the laminate with a temperature gradient

through the thickness of the plate approaches the postbuckling relation very closely. It is in-

teresting to note that even when the plate has an Initial deformation including only w_l, the

influence of the wl= and the w3_ terms in the solution still become important and cause the

deflections at the center of the plate to decrease for c/AT ° > 3. The imperfection response still

follows the postbuckling response. The shift in the importance of the terms w, and w=_influ-

ences the overall deflection pattern of"the plate, as was illustrated in Fig. 30.

The responses for the ( + 45/0=)s laminate in the presence of imperfections with ¢ = 30=

are shown in Fig. 40 for the case of. fixed simple supports, and in Fig. 41 for the case of

sliding simple supports. To avoid clutter, other boundary or skewing conditions are not shown

for comparison. However, these figures should be compared with Fig. 38 and Fig. 39. For

both sets of boundary conditions, with = = 30 ° the imperfection responses approach the

postbuckling response more swiftly than = = 0 °. The response for the case of a thermal gra-

dient through the thickness of the plate lies even closer to the postbuckling response for a

(-P 45/0z)s laminate with = = 30° than for a (+ 45/0z)s laminate with = = 0 ° under either set of

boundary conditions. For both sets of boundary conditons, the deflections prior to the critical

buckling temperature for a ( + 45/0=)s with ,, = 30 ° in the case of an initial deformation are also

smaller than those for a (+ 45/0z)= laminate with = =0 °. Also to be noted is that whereas the
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Fig. 39. Imperfection analyses: (:L_-4510,)s plate with :: O* and sliding simple supports.
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Fig. 40. Imperfection analyses: (::L--4510=)a plate with == 30" and fixed simple supports.

Response in the Presence of an Imperfection 121



"T"
..-,..,,,

1

v

2.0

c/Er"

6.0

Fig. 41. Imperfection Inllylii: (:i'4SlO,) s plate with =: 30" and sliding simple supports.
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temperature-deflection relation for the case of fixed simple supports and ,, -:- 0° tends to flatten

as c/&T" exceeds 4, rotating the laminate material axes by = = 30° eliminates this flattening.

This effect is even more pronounced for the case of sliding simple supports. For sliding simple

supports and = = 0°, the relationship indicates decreasing deflections with increasing tem-

perature beyond c/AT ° = 3. Rotating the laminate by = = 30 ° eliminated this tendency.

In all of the cases examined above, the responses in the presence of imperfections ap-

proach the postbuckling response for a given laminate. This indicates that the presence of

these small imperfections do not greatly affect the response of heated laminates, so that the

postbuckling response obtained for laminates under ideal conditions can be considered valid

for laminates with minor imperfections.

This chapter concludes what can be considered an extensive study of the influence of

boundary conditions, material axis skewing, and lamination properties on the buckling, post-

buckling, and imperfection response of composite plates that result from increases in tem-

perature. A large amount of information has been presented. This Information will be

summarized shortly, and recommendations for future study made. However, before closing

the study, an important issue must be addressed. That is the issue of experimental confir-

mation of the findings. In all that has been presented, it has been assumed that, for example,

fixed boundary conditions can be achieved. In reality, any fixturing that is to be used to sup-

port the plates in experiments would not have infinite stiffness, and it may have its own ther-

mal expansion, or contraction, characteristics. Hence, the next chapter is a brief look at the

influence of the lack of ideal conditions on the predicted response. Though no experimental

results are presented here, it is quite important to at least evaluate how important the lack

of ideal conditions are in contributing to the response of the composite plate. This information

can then be used to put the results of the previous chapters into context, and it can be used

as the starting point when considering the design of experiments. Two important deviations

from the ideal will be addressed here. Those issues are: The influence of boundary compli-

ance, and; The influence of thermal deformations at the boundary due, presumably, to the

thermal deformations of the fixture or frame supporting the composite plate.
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7.0 Experimental Considerations

To study the lack or" ideal conditions, for simplicity only the (-t-45/0/90)s and (-F 45/0=)=

laminates with ==0 ° will be considered. Also, it is assumed that the fixturing or support for

the composite plate is made entirely of tsotropic materials. In addition, only the buckling

temperatures will be studied. The issue of interest will be to determine how the lack of" ideal

conditions contribute to deviations of the buckling temperature from those associated with

ideal conditions. Recall that [or these two laminates under the condition ==0 °, the

prebuckling solution was trivial. With experience, it is possible to anticipate that these cases

would indeed lead to trivial prebuckling stress resultant calculations and it would be possible

to correctly anticipate that the stress resultants are simply the negative of the thermal stress

resultants N.T , N_, and N_. In that context, then, the approach to determining the prebuckling

stress resultants resembles a strength of materials approach. That is the approach that will

be used here to evaluate the influence of the lack of ideal conditions on the buckling temper-

ature. This is opposed to the variational approach, where, for example, contributions to the

total potential energy due to compliance of the boundary would be included and a series sol-

ution assumed.
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7.1 Influence of Fixture Thermal Expansion

If the frame or fixture supporting the plate is not ideal, the boundary conditions given in

eqn. 4.14- 4.15 are no longer valid and new boundary conditions must be formulated. This is

accomplished as follows: If the frame can expand, then when the temperature is increased,

the supports for the edges of the plate, which are assumed to be part of the frame, will sepa-

rate from one another by

A x = a_fAT

by = b_fAT, (7.1)

where =_denotes the coefficient of thermal expansion of the frame, and a and b are the length

and width of both the interior of the frame and of the plate, since it is assumed that the frame

fits the plate snugly. A schematic of the frame deformation is given in Fig. 42. The conditions

at the edges of the plate can then be given by

at

at

x=0, a
a

(i) u = :1:T =tAT

(ii) v=0orNxy=O

y=O,b

(i) u =OorNxy =0

b
(ii) v = T _ =_&T,

(7.2)

where the minus is associated with the edge at x or y = O, and the plus is associated with the

opposite edge in each case. Whereas the prebuckling displacements throughout the plate for

either the ( -f-45/0/90)s or the ( _.+45/Oz)s laminate with = = 0° were zero in the case of an ideal

frame, the displacements at the edges of the plate are now the same as those of the frame,

given in eqn. 7.1 and eqn. 7.2. Thus, in the presence of frame thermal expansion, the

prebuckling strains in the plate are given by
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o Ax
Cx = T = =fAT

o Ay
_y = _ = _,_T
0

_'xy = O.

(7.3)

Using these expressions for strain and the fact that for the ( -t- 45/0/90)s and ( + 45/0=)s lami-

nates with = =0 °, Ale = Azs = N_ = 0, the prebuckling stress resultants can be written as

Nx= +A,=,,,-

Nxy = O,

(7.4)

Substituting the expressions in eqn. 7.4 into the first variation of the second variation of the

total potential energy, eqn. 4.13, results in an equation for the thermal buckling of the

( + 45/0/90)s and ( + 45/0=)s laminates with = = 0 ° which includes the the effect of a thermally

expanding frame. The thermal buckling solution then proceeds as before. Note, though they

are not needed, it can be determined that the prebuckling displacements are linear functions

of x and y.

In Fig. 43 the buckling temperatures of square (+ 45/0/90)s and (+ 45/0=)s laminates,

normalized by AT °, the buckling temperature for either laminate with an ideal frame, are

plotted versus =,. These results correspond to a 6 in. by 6 in. plate. This figure indicates that

the thermal buckling temperature is highly sensitive to a thermally expanding frame. For =f

as low as 0.5 ppm/°F the buckling temperature for both laminates more than doubles. For =f

greater than this, increasing =r affects the buckling temperature of the ( + 45/0/90)s laminate

much more than the buckling temperature of the ( __.45/0=)s laminate. Referring to eqn. 7.4, it

can be seen that for a 'quasi-isotropic laminate, since All = Azz and N_ = N_, at some value of

=t both N, and Ny will simultaneously become equal to zero. This value of =f occurs at roughly

1.0 ppm/°F. When =f is greater than this value, with increasing temperature the frame expands

more rapidly than the (+45/0/90)s laminate, so that the laminate can only be buckled by
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Fig. 43. Influence of frame thermal expenoion on buckling temperatures.
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byloweringthetemperature!Notethatthiswouldbethecasefora steelor aluminumframe,

asthe coefficientsof thermalexpansionfor both of these materials are much greater than

• 1,0 ppm/°F. Fixture design must clearly take this important effect into account,

7.2 Influence of Frame Compfiance

Assuming =f has a value such that the expansion of the plate could actually exert com-

pression force resultants on the frame, if the frame has finite stiffness then an equivalent

spring constant, Kf, can be determined for the frame such that

•A, X

bNx = -- Kr T

Ay
aNy = - Kr---_-,

(7.s)

where &= and Ay are as shown in Fig. 42. Note that the minus sign is necessary because a

+N= causes the frame to contract. In the above, the quantites bN. and aN. are forces, and

hence Kf is a classic stiffness with units of force/length. Including the thermal expansion of

the frame, when temperature is applied, the edges of the frame separate by

2bN x

Ax = a=tAT Kr

2aNy

&y = b=fAT Kt

(7.6)

The conditions at the edges of the plate are then be given by
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at x=0, a

(J)u= :F

(ii)v=0orNxy=0

at y=0, b

(i) u=0orNxy=O

(ii) v=-T- _=fAT

2bNx /Kf

2aNy tK!

(7_7)

where, as before, the minus sign is associated with the edge at x or y = 0 and the plus sign

with the opposite edges. As a result, the strains in the plate can be written as

o Ax 2bNx
_x =_= =tAT

a aKf

o Ay 2aNy

cy =--_--= =f&T- bKf

O

Yxy = 0.

(7.8)

Once again, using the fact that A,e = A_ = N_ = 0 for both ("_+45/o/gO)s and ('4- 45/Oz)s Jam-

inates with = =0 °, and considering only square laminates, a = b, the prebuckllng stress re-

sultants can be expressed as

Nx=All =IAT---_-;--f )+A12 _,tA,T

Q AT

Nxy = 0.

(7.9)

Rearranging the first two expressions in eqn. 7.9 yields

1 2A'I INx ( 2A'2 NxT}aT"I-_ 4-_ _ INy = {(All4-A,2)czf-

Kf Nx+ 1 +_--t Ny= + -

(7.10)
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Usingeqn.7.10theprebucklingstressresultantscanbewritten

N.={[/<A''

N,={[/<A'2
Nxy : O.

--T 2A22
+ A12)=f _ Nx)(1 + .___.t ) _ ((A12 +. , _,T,/' 2A_2

(1 2All _/, 2A22 _ / 2A12 _2 }&T+T, )t,'+TJ-t, TI
--T 2A11

+A22)¢,_Ny)(l+____t t_((AI1\ / . , _.T\/ 2A12

+T) - /

(7.11)

Substituting these expressions for the prebuckllng stress resultants into the buckling

equation, eqn. 4.13, results in an equation for thermal buckling which includes the effects of

a frame with finite stiffness and a non-zero coefficient of thermal expansion. In Fig. 44 the

buckling temperatures of square (+ 45/0/g0)s and (+ 45/0z)s laminates, normalized by &T °,

are plotted as a function of the equivalent spring constant of the frame, K,. These results were

obtained for 6 in. by 6 in. plates with =, assumed to be zero. As can be seen, the buckling

temperature is sensitive to a lack of infinite stiffness in the frame. For frames with

K, > 1 x 107 Ib/in., there is very little change in the buckling temperature for either laminate.

However, the buckling temperature increases rapidly for both laminates as K, decreases be-

low this value. When designing fixtures, the value of K, must be determined based on how

fixture components are fastened together, i. e., bolt diameters, weld sizes, etc., as well as the

fixture material.

From the results presented, it appears that the thermal expansion of the frame could be

the more serious of the issues. Increased stiffness can be achieved with increased thickness

or redesign of supports. However, thermal expansion of a material is independent of its

thickness. Thicker frames expand the same as thinner frames. It would seem that material

for fixturing would focus only on materials with very low thermal expansion coefficients. To
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do otherwise would have a profound influence on correlation between experimental findings

and predictions.
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8.0 Summary, Conclusions and Recommendations

In this thesis the prebuckling, buckling, postbuckling, and imperfection response of sym-

metrically laminated composite plates in the presence of increasing temperature are studied

under a variety of physical conditions. This is accomplished using the Rayleigh-Ritz method

in conjunction with variational methods. This analysis has been applied to a graphite-

reinforced composite with (+_ 45/0/90)s and (± 45/0=)s lamination sequences. Numerical re-

sults have been obtained for these laminates and also for the cases of the material axes of

these laminates being rotated inplane by an angle =.

The first case to be studied here is the simplest, a spatially uniform change in temper-

ature. Sensitivity studies have been conducted for this case to determine the sensitivity of the

buckling temperature to variations in material properties. The buckling temperature is found

to be sensitive to variations in =1, =z, E_, and Ez, and to be insensitive to variations in GI= and

v_=. Two boundary conditions, fixed and sliding simple supports, have been considered. For

the case of fixed simple supports, the prebuckling solution is the trivial solution. This is also

true for the case of sliding simple supports if the laminate in question is such that N_, = 0.

For this situation, the buckling solutions for fixed and sliding simple supports are identical.

When N_O, for a laminate under sliding simple support conditions, the prebuckling stress

resultants are found to vary throughout the laminate. However, even though the prebuckling
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solutiondoesvarythroughoutthe laminate,it makesonlya smalldifferencein thebuckling

solutionas comparedto the bucklingsolutionforthe samelaminatewithfixedsimplesup-

ports,a conditionthat producesa prebucklingsolutionthatis constantthroughoutthe lami-

nate.- Hencethe bucklingsolutionfor the case of sliding simple supports is relatively

insensitive to the number of terms taken in the prebuckling solution.

Square laminates under either boundary condition experience a decrease in buckling

temperature when the material axes are skewed, _0. Nevertheless, the buckling temper-

atures of these laminates are quite high as compared to the buckling temperatures of steel

or aluminum plates of the same dimensions. The buckling temperature of square laminates

is strongly dependent on the term D = Dll + 2(Dlz+ 2Du) + Dzz, thus the (__. 45/0/90)s and the

(+ 45/0=)s square laminates have very similar buckling solutions because the term D is the

same for both laminates at all values of =. For these laminates with rectangular planform,

a/b=2, the buckling temperatures are lower than for square laminates and increase

monotonically as the skew angle ranges from = = 30= to ,, = -30 =. The buckled shapes In all

cases consist primarily of just one half-wave in each direction, however, the buckled shape is

slightly asymmetric with respect to the plates' square or rectangular geometry. This

asymmetry is due to the D_eand Dzsbending stiffness terms, and in some cases, to the thermal

stress resultant N_ as well.

The buckling of laminates in the presence of a linearly varying temperature gradient,

&T = c + dx, is also studied. For this case the prebuckling solution is never trivial, and is

in fact quite complicated. The buckling solution, however, is relatively insensitive to the

number of terms taken in the prebuckling solution. The solutions for laminates with fixed

simple supports and with sliding simple supports are never the same. However, the buckling

temperatures, c, of rectangular plates are lower than the buckling temperatures of square

plates, and the buckling temperatures of square pates with = = 30= are lower than the buckling

temperatures of square plates with = = 0°. An interesting feature of this situation is that for

rectangular plates or for plates with = = 30=, when d is fairly large and positive, meaning that

the right end of the plate is much warmer than the lef_ end, the lef_ end must actually be cooled
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inorderfortheplateto buckle,i. e.,c<0. Furthermore,theasymmetryofthebuckledshape,

seenfor a uniform change in temperature, is exaggerated by the presence of a thermal gra-

dient.

Thermal postbuckling is investigated for square plates under a uniform change in tem-

perature. All of the laminates studied show considerable resistance to thermal postbuckling,

deflecting by less than two plate thicknesses at changes in temperature as much as five times

the buckling temperature. In all cases, laminates with fixed simple supports exhibit greater

deflections than laminates with sliding simple supports. Laminates with skewed material

axes, • = 30 °, also deflect more than on-axis, = = 0°, laminates. The postbuckllng response

can be complex. In most cases, the postbuckling response consists mainly of the deflections

associated with the Rayleigh-Ritz coefficient wl_, however, for the (+ 45/0=)s laminate with

= = 0° with temperatures greater than 1.5 times the buckling temperature, the deflections as-

sociated with wl=, and, to a lesser extent, w=l, begin to influence the postbuckling response

more and more with increasing temperature. For the (+ 45/0=)= laminate with = =0 ° and

sliding simple supports, this influence becomes so great that the deflections at the center of

the plate actually begin to decrease as the temperature increases beyond three times the

buckling temperature. The influence of orthotropy on postbuckling response depends strongly

on the skew angle, =. For _ = 0 ° there is a significant difference between the postbuckling

response of the (+ 45/0=)s laminate and the (+ 45/0/90)s laminate. For = = 30°, there is a

minimal difference in the responses,

The influence of imperfections is also studied for square laminates. Two specific forms

of imperfection have been studied: a thermal gradient through the thickness of the laminate;

and a lack of initial flatness. In all cases, the presence of a 5% temperature gradient

through-the-thickness of the laminate results in a response which, with increasing temper-

ature, swiftly approaches the postbuckling response. With a lack of initial flatness, the re-

sponse increases much more at the outset, but also approaches the postbuckling response.

It is interesting to note that even when the plate has as initial deformation of the form asso-

ciated with w11, the influence of the wt_ and the w3, terms in the solution still causes the de-
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flectionat the centerof the plateto decreaseasthetemperatureincreasesbeyondthree

timesthe bucklingtemperature,the imperfectionresponsefollowingthe postbucklingre-

sponse.

Lastly,the influenceof a lackof idealfixturing conditions on the buckling temperatures

of square ( -t- 45/0/90)s and ( ± 45/0=)s laminates with = ---0 ° is considered. The two issues of

interest are the fixturing compliance and thermal expansion which would occur in any real

set-up. Both of these factors raise the buckling temperatures obtained for ideal conditions.

Of the two, the presence of fixture thermal expansion has the greatest impact on buckling

temperature. Indeed, for fixtures with coefficients of thermal expansion greater than

1.0ppm/°F, the quasi-isotropic laminate cannot be buckled except by lowering the temper-

ature, while so long as the equivalent spring constant of the fixture is greater than 1 x 10z Ib/in.

there is very little change in the buckling temperature for either laminate. In planning an ex-

perimental fixture, sufficient stiffness could be achieved in the design of the supports, by pro-

viding enough thickness, for example. However, the thermal expansion of the fixture can only

be controlled through material choice. To avoid a profound impact on correlation between

analytical and experimental results, candidate materials would have to have extremely low

coefficients of thermal expansion. This severely limits the choices available. A fixture could

be constructed of composite materials designed to have near zero thermal expansion in the

appropriate direction, but the difficulty of designing such a fixture, and the possibly prohibitive

cost of manufacturing it, make this option unattractive. The remaining materials to choose

from with low enough thermal expansion coefficients generally fall into the categories of

glasses or glass ceramics. Due to the brittleness usually associated with such materials, the

next most important consideration in material choice would then have to be strength and

machinability. Even so, the laminates to be tested would have to be designed to have fairly

low buckling temperatures under ideal conditions so that the presence of compliance and

thermal expansion in the experimental fixture would not necessitate the use of unreasonable

high temperatures to obtain buckling.
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shouldbeconductedto confirmanalyticalresults. Nosuchdataappearsto beavailableat

this time. However,thedesignandimplementationof thermalbucklingexperimentsis non-

trivial. Alsoof importancewouldbetheinclusionof time-andtemperature-dependentmate-

rial propertiesin the formulations. Understanding these effects will be particularly important

if polymer-based composites are to be used in elevated temperature environments for sus-

tained periods of time. Other recommer_dations for future research include extending the

analysis to unsymmetric laminates, studying the effects of other boundary conditions and the

effects of including transverse shear deformations in the analysis. Finally, the philosophy of

the computational scheme, namely, the Rayleigh-Ritz approach, could be re-evaluated.

Though the buckling calculations do not seem to be very sensitive to the prebuckling problem,

it is Important to understand this aspect of the problem. A finite-element approach might lead

to a more efficient examination of the influence of temperature gradients and a variety of

boundary conditions on the prebuckling response. Details of the buckling response might be

more efficiently studied with a finite-element formulation of that aspect of the problem. The

postbuckling response, and the response in the presence of imperfections, are nonlinear

problems and finite-element schemes can be just as computationally intense as the

Rayleigh-Ritz approach. Again, the effects of a variety of boundary conditions and temper-

ature gradients might be more efficiently studied using a finite-element approach. The effect

of imperfect boundaries could perhaps be incorporated into response prediction with this al-

ternate approach,
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